Construction of T7-Like Expression System in Pseudomonas putida KT2440 to Enhance the Heterologous Expression Level
Tóm tắt
Từ khóa
Tài liệu tham khảo
Calero, 2016, Broad-Host-Range ProUSER Vectors Enable Fast Characterization of Inducible Promoters and Optimization Ofp-Coumaric Acid Production in Pseudomonas putida KT2440, ACS Synth. Biol., 5, 741, 10.1021/acssynbio.6b00081
Christina, 2012, Novel Broad Host Range Shuttle Vectors for Expression in Escherichia coli , Bacillus Subtilis and Pseudomonas putida, J. Biotechnol., 161, 71, 10.1016/j.jbiotec.2012.02.020
Cook, 2018, Genetic Tools for Reliable Gene Expression and Recombineering in Pseudomonas putida, J. Ind. Microbiol. Biotechnol., 45, 517, 10.1007/s10295-017-2001-5
Damalas, 2020, SEVA 3.1: Enabling Interoperability of DNA Assembly Among the SEVA, BioBricks and Type IIS Restriction Enzyme Standards, Microb. Biotechnol., 13, 1793, 10.1111/1751-7915.13609
Dammeyer, 2011, Efficient Production of Soluble Recombinant Single Chain Fv Fragments by a Pseudomonas putida Strain KT2440 Cell Factory, Microb. Cell Fact, 10, 11, 10.1186/1475-2859-10-11
dos Santos, 2004, Insights into the Genomic Basis of Niche Specificity of Pseudomonas putida KT2440, Environ. Microbiol., 6, 1264, 10.1111/j.1462-2920.2004.00734.x
Ebert, 2011, Response of Pseudomonas putida KT2440 to Increased NADH and ATP Demand, Appl. Environ. Microbiol., 77, 6597, 10.1128/AEM.05588-11
Elmore, 2017, Development of a High Efficiency Integration System and Promoter Library for Rapid Modification of Pseudomonas putida KT2440, Metab. Eng. Commun., 5, 1, 10.1016/J.METENO.2017.04.001
Gauttam, 2020, Construction of a Novel Dual-Inducible Duet-Expression System for Gene (Over)expression in Pseudomonas putida, Plasmid, 110, 102514, 10.1016/j.plasmid.2020.102514
Gong, 2016, Metabolic Engineering of Pseudomonas putida KT2440 for Complete Mineralization of Methyl Parathion and γ-Hexachlorocyclohexane, ACS Synth. Biol., 5, 434, 10.1021/acssynbio.6b00025
Herrero, 1993, A T7 RNA Polymerase-Based System for the Construction of Pseudomonas Strains with Phenotypes Dependent on TOL-Meta Pathway Effectors, Gene, 134, 103, 10.1016/0378-1119(93)90181-2
Lieder, 2015, Genome Reduction Boosts Heterologous Gene Expression in Pseudomonas putida, Microb. Cell Fact., 14, 23, 10.1186/s12934-015-0207-7
Lu, 2020, Efficient Heterologous Expression of Nicotinate Dehydrogenase in Comamonas Testosteroni CNB-2 with Transcriptional, Folding Enhancement Strategy, Enzyme Microb. Tech., 134, 109478, 10.1016/j.enzmictec.2019.109478
Martínez-García, 2015, SEVA 2.0: An Update of the Standard European Vector Architecture for De-/re-construction of Bacterial Functionalities, Nucleic Acids Res., 43, D1183, 10.1093/nar/gku1114
Martínez-García, 2017, Molecular Tools and Emerging Strategies for Deep Genetic/genomic Refactoring of Pseudomonas, Curr. Opin. Biotechnol., 47, 120, 10.1016/j.copbio.2017.06.013
Martínez-García, 2019, Pseudomonas putida in the Quest of Programmable Chemistry, Curr. Opin. Biotechnol., 59, 111, 10.1016/j.copbio.2019.03.012
Martínez-García, 2014, Pseudomonas 2.0: Genetic Upgrading of P. Putida KT2440 as an Enhanced Host for Heterologous Gene Expression, Microb. Cell Fact., 13, 159, 10.1186/s12934-014-0159-3
Nikel, 2016, From Dirt to Industrial Applications: Pseudomonas putida as a Synthetic Biology Chassis for Hosting Harsh Biochemical Reactions, Curr. Opin. Chem. Biol., 34, 20, 10.1016/j.cbpa.2016.05.011
Nikel, 2018, Pseudomonas putida as a Functional Chassis for Industrial Biocatalysis: From Native Biochemistry to Trans-metabolism, Metab. Eng., 50, 142, 10.1016/j.ymben.2018.05.005
Nikel, 2014, Biotechnological Domestication of Pseudomonads Using Synthetic Biology, Nat. Rev. Microbiol., 12, 368, 10.1038/nrmicro3253
Poblete-Castro, 2012, Industrial Biotechnology of Pseudomonas putida and Related Species, Appl. Microbiol. Biotechnol., 93, 2279, 10.1007/s00253-012-3928-0
Shilling, 2020, Improved Designs for pET Expression Plasmids Increase Protein Production Yield in Escherichia coli, Commun. Biol., 3, 10.1038/s42003-020-0939-8
Sun, 2018, Genome Editing and Transcriptional Repression in Pseudomonas putida KT2440 via the Type II CRISPR System, Microb. Cell Fact., 17, 41, 10.1186/s12934-018-0887-x
Timmis, 2002, Pseudomonas putida: a Cosmopolitan Opportunist Par Excellence, Environ. Microbiol., 4, 779, 10.1046/j.1462-2920.2002.00365.x
Walker, 2002, The Effect of Increasing Plasmid Size on Transformation Efficiency in Escherichia coli, J. Exp. Microbiol. Immunol., 2, 207
Wang, 2018, Bacteriophage T7 Transcription System: an Enabling Tool in Synthetic Biology, Biotechnol. Adv., 36, 2129, 10.1016/j.biotechadv.2018.10.001
Xiao, 2014, CasOT: A Genome-Wide Cas9/gRNA Off-Target Searching Tool, Bioinformatics, 30, 1180, 10.1093/bioinformatics/btt764
Yang, 2012, Plasmid Size Can Affect the Ability of Escherichia coli to Produce High-Quality Plasmids, Biotechnol. Lett., 34, 2017, 10.1007/s10529-012-0994-4
Yang, 2010, Cloning, Expression and Functional Analysis of Nicotinate Dehydrogenase Gene Cluster From Comamonas Testosteroni JA1 That Can Hydroxylate 3-Cyanopyridine, Biodegradation, 21, 593, 10.1007/s10532-010-9327-2
Zhao, 2017, Novel T7-like Expression Systems Used for Halomonas, Metab. Eng., 39, 128, 10.1016/j.ymben.2016.11.007