Construction of Rosenbrock–Wanner method Rodas5P and numerical benchmarks within the Julia Differential Equations package
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alonso-Mallo, I., Cano, B.: Spectral/Rosenbrock discretizations without order reduction for linear parabolic problems. APNUM 41(2), 247–268 (2002)
Alonso-Mallo, I., Cano, B.: Efficient time integration of nonlinear partial differential equations by means of Rosenbrock methods. Mathematics 9(16), 1970 (2021). https://doi.org/10.3390/math9161970
Di Marzo, G.: RODAS5(4)-Méthodes de Rosenbrock d’ordre 5(4) adaptées aux problemes différentiels-algébriques. MSc mathematics thesis, Faculty of Science, University of Geneva, Switzerland (1993)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential Algebraic Problems, 2nd edn. Springer-Verlag, Berlin Heidelberg (1996)
Jax, T.: A rooted-tree based derivation of ROW-type methods with arbitrary Jacobian entries for solving index-one DAEs, Dissertation, University Wuppertal (2019)
Kaps, P., Rentrop, P.: Generalized Runge–Kutta methods of order four with stepsize control for stiff ordinary differential equations. Numer. Math. 33, 55–68 (1979)
Lamour, R., März, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based Analysis, Differential-Algebraic Equations Forum book series. Springer, London (2013)
Lang, J.: Rosenbrock–Wanner Methods: Construction and Mission. In: Jax, T., Bartel, A., Ehrhardt, M., Günther, M., Steinebach, G. (eds.) Rosenbrock–Wanner-Type Methods, pp. 1–17. Mathematics Online First Collections Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76810-2_2
Lang, J., Teleaga, D.: Towards a fully space-time adaptive FEM for magnetoquasistatics. IEEE Trans. Magn. 44, 1238–1241 (2008)
Lang, J., Verwer, J.G.: ROS3P-An Accurate Third-Order Rosenbrock Solver Designed for Parabolic Problems. J. BIT Numer. Math. 41, 731 (2001). https://doi.org/10.1023/A:1021900219772
Lubich, Ch., Roche, M.: Rosenbrock methods for differential-algebraic systems with solution-dependent singular matrix multiplying the derivative. Computing 43, 325–342 (1990). https://doi.org/10.1007/BF02241653
Mazzia, F., Cash, J.R., Soetaert, K.: A test set for stiff initial value problem solvers in the open source software R. J. Comput. Appl. Math. 236, 4119–4131 (2012)
Mazzia, F., Magherini, C.: Test set for initial value problem solvers, release 2.4 (Rep. 4/2008). Department of Mathematics, University of Bari, Italy. see https://archimede.uniba.it/testset/testsetivpsolvers/
Ostermann, A., Roche, M.: Rosenbrock methods for partial differential equations and fractional orders of convergence. SIAM J. Numer. Anal. 30, 1084–1098 (1993)
Prothero, A., Robinson, A.: The stability and accuracy of one-step methods. Math. Comp. 28, 145–162 (1974)
Rackauckas, C., Nie, Q.: Differentialequations.jl-a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5(1), 15 (2017)
Rang, J.: Improved traditional Rosenbrock–Wanner methods for stiff ODEs and DAEs. J. Comput. Appl. Math. 286, 128–144 (2015)
Rang, J.: The Prothero and Robinson example: Convergence studies for Runge–Kutta and Rosenbrock–Wanner methods. Appl. Numer. Math. 108, 37–56 (2016)
Rentrop, P., Roche, M., Steinebach, G.: The application of Rosenbrock–Wanner type methods with stepsize control in differential-algebraic equations. Numer. Math. 55, 545–563 (1989)
Sandu, A., Verwer, J.G., Van Loon, M., Carmichael, G.R., Potra, F.A., Dabdub, D., Seinfeld, J.H.: Benchmarking stiff ode solvers for atmospheric chemistry problems-I. implicit vs explicit. Atmos. Environ. 31(19), 3151–3166 (1997). https://doi.org/10.1016/S1352-2310(97)00059-9
Sanz-Serna, J.M., Verwer, J.G., Hundsdorfer, W.H.: Convergence and order reduction of Runge–Kutta schemes applied to evolutionary problems in partial differential eqautions. Numer. Math. 50, 405–418 (1986)
Steinebach, G.: Order-reduction of ROW-methods for DAEs and method of lines applications. Preprint-Nr. 1741, FB Mathematik, TH Darmstadt (1995)
Steinebach, G.: Improvement of Rosenbrock–Wanner Method RODASP. In: Reis, T., Grundel, S., Schöps, S. (eds.) Progress in differential-algebraic equations II. Differential-algebraic equations forum, pp. 165–184. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53905-4_6
Steinebach, G., Dreistadt, D.M.: Water and hydrogen flow in networks: modelling and numerical solution by ROW methods. In: Jax, T., Bartel, A., Ehrhardt, M., Günther, M., Steinebach, G. (eds.) Rosenbrock–Wanner-Type Methods, pp. 19–47. Mathematics Online First Collections, Springer, Cham (2021)