Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Xây dựng cấu trúc lớp vỏ lõi K-doped TiO2 nanowires@MoS2 nanosheets để nghiên cứu về siêu tụ điện
Tóm tắt
Để nâng cao điện dung riêng của siêu tụ điện dựa trên titan, một vật liệu điện cực không có liên kết mới được lắp ráp với dây nano TiO2 pha trộn (anatase và rutile) được dop K, được phủ bởi các lớp nano MoS2 (K-TNW@MNs). Cấu trúc lõi-vỏ K-TNW@MNs được chuẩn bị thông qua phản ứng thủy nhiệt có hỗ trợ chitosan. Mẫu mềm chitosan được chọn để phát triển đồng đều MNs trên K-TNW và giảm thiểu sự tụ tập của MNs. Cấu trúc khung K-TNW cung cấp một diện tích bề mặt lớn để gắn và neo các lớp nano MoS2. Kết quả là, K-TNW@MNs cho thấy điện dung riêng cao là 123,53 mF cm−2 tại 0,4 mA cm−2, khả năng duy trì tỷ lệ tốt và độ ổn định chu kỳ xuất sắc với tỷ lệ giữ điện dung đạt 84,49% sau 6000 chu kỳ. Một siêu tụ điện đối xứng nguyên khối mới được lắp ráp bằng hai điện cực K-TNW@MNs và dung dịch điện phân gel KCl/polyvinyl alcohol cho thấy tỷ lệ giữ điện dung tốt là 78,44% sau 6000 chu kỳ. Nghiên cứu này cung cấp một chiến lược mới để giảm sự tụ tập của các lớp nano MoS2 trên dây nano TiO2 thông qua sự hỗ trợ của chitosan.
Từ khóa
#Siêu tụ điện #Dây nano TiO2 #MoS2 #Chitosan #Điện dung riêngTài liệu tham khảo
Anitha VC, Banerjee AN, Joo SW, Min BK (2015) Barrier-oxide layer engineering of TiO2 nanotube arrays to get single-and multi-stage Y-branched nanotubes: effect of voltage ramping and electrolyte conductivity. Mater Sci Eng B 195:1–11
Anitha VC, Hamnabard N, Banerjee AN, Dillip GR, Joo SW (2016) Enhanced electrochemical performance of morphology-controlled titania-reduced graphene oxide nanostructures fabricated via a combined anodization-hydrothermal process. RSC Adv 6:12571–12583
Banerjee AN, Anitha VC, Joo SW (2017) Improved electrochemical properties of morphology-controlled titania/titanate nanostructures prepared by in-situ hydrothermal surface modification of self-source Ti substrate for high-performance supercapacitors. Sci Rep 7:13227
Barai HR, Rahman MM, Joo SW (2017) Annealing-free synthesis of K-doped mixed-phase TiO2 nanofibers on Ti foil for electrochemical supercapacitor. Electrochim Acta 253:563–571
Barai HR, Rahman MM, Joo SW (2017) Template-free synthesis of two-dimensional titania/titanate nanosheets as electrodes for high-performance supercapacitor applications. J Power Sources 372:227–234
Barai HR, Banerjee AN, Bai F, Joo SW (2018) Surface modification of titania nanotube arrays with crystalline manganese-oxide nanostructures and fabrication of hybrid electrochemical electrode for high-performance supercapacitors. J Ind Eng Chem 62:409–417
Chang K, Chen WX, Ma L, Li H, Huang FH, Xu ZD, Zhang QB, Lee JY (2011) Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J Mater Chem 21:6251–6257
Chen JQ, Xia ZB, Li H, Li Q, Zhang YJ (2015) Preparation of highly capacitive polyaniline/black TiO2 nanotubes as supercapacitor electrode by hydrogenation and electrochemical deposition. Electrochim Acta 166:174–182
Chen B, Liu EZ, He F, Shi CS, He CN, Li JJ, Zhao NQ (2016) 2D sandwich-like carbon-coated ultrathin TiO2@defect-rich MoS2 hybrid nanosheets: Synergistic-effect-promoted electrochemical performance for lithium ion batteries. Nano Energy 26:541–549
Chen B, Liu EZ, Cao TT, He F, Shi CS, He CN, Ma LY, Li QY, Li JJ, Zhao NQ (2017) Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: towards high-performance lithium-ion batteries anode materials. Nano Energy 33:247–256
Cheng HH, Dong ZL, Hu CG, Zhao Y, Hu Y, Qu LT, Chen N, Dai LM (2013) Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5:3428–3434
Griffith KJ, Senyshyn A, Grey CP (2017) Structural stability from crystallographic shear in TiO2–Nb2O5 phases: cation ordering and lithiation behavior of TiNb24O62. Inorg Chem 56:4002–4010
Guo BJ, Yu K, Fu H, Hua QQ, Qi RJ, Li HL, Song HL, Guo S, Zhu ZQ (2015) Firework-shaped TiO2 microspheres embedded with few-layer MoS2 as an anode material for excellent performance lithium-ion batteries. J Mater Chem A 3:6392–6401
Guo WF, Li YS, Tang YF, Chen SJ, Liu ZY, Wang L, Zhao YF, Gao FM (2017) TiO2 nanowire arrays on titanium substrate as a novel binder-free negative electrode for asymmetric supercapacitor. Electrochim Acta 229:197–207
Hu CC, Xu HH, Liu XX, Zou F, Qie L, Huang YH, Hu XL (2015) VO2/TiO2 nanosponges as binder-free electrodes for high-performance supercapacitors. Sci Rep 5:16012
Hu K, Zheng C, An M, Ma XH, Wang L (2018) A peptide-based supercapacitor and its performance improvement via TiO2 coating. J Mater Chem A 6:8047–8052
Jing C, Liu XL, Liu XY, Jiang DB, Dong BQ, Dong F, Wang JS, Li N, Lan T, Zhang YX (2018) Crystal morphology evolution of Ni-Co layered double hydroxide nanostructure towards high-performance biotemplate asymmetric supercapacitors. CrystEngComm 20:7428–7434
Jing C, Zhu YM, Liu XY, Ma XF, Dong F, Dong BQ, Li SC, Li N, Lan T, Zhang YX (2019) Morphology and crystallinity-controlled synthesis of etched CoAl LDO/MnO2 hybrid nanoarrays towards high performance supercapacitors. J Alloys Compd 806:917–925
Jing C, Liu XY, Yao HC, Yan P, Zhao G, Bai XL, Dong BQ, Dong F, Li SC, Zhang YX (2019) Phase and morphology evolution of CoAl LDH nanosheets towards advanced supercapacitor applications. CrystEngComm 21:4934–4942
Jing C, Guo XL, Xia LH, Chen YX, Wang X, Liu XY, Dong BQ, Dong F, Li SC, Zhang YX (2020) Morphologically confined hybridization of tiny CoNi2S4 nanosheets into S, P co-doped graphene leading to enhanced pseudocapacitance and rate capability. Chem Eng J 379:122305
Kim HK, Mhamane D, Kim MS, Roh HK, Aravindan V, Madhavi S, Roh KC, Kim KB (2016) TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. J Power Sources 327:171–177
Li XD, Li W, Li MC, Cui P, Chen DH, Gengenbach T, Chu LH, Liu HY, Song GS (2015) Glucose-assisted synthesis of the hierarchical TiO2 nanowire@ MoS2 nanosheet nanocomposite and its synergistic lithium storage performance. J Mater Chem A 3:2762–2769
Li JL, Shi QW, Shao YL, Hou CY, Li YG, Zhang QH, Wang HZ (2019) Cladding nanostructured AgNWs-MoS2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor. Energy Storage Mater 16:212–219
Liao JY, Higgins D, Lui G, Chabot V, Xiao XC, Chen ZW (2013) Multifunctional TiO2–C/MnO2 core–double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett 13:5467–5473
Liao JY, De LB, Manthiram A (2016) TiO2-B nanowire arrays coated with layered MoS2 nanosheets for lithium and sodium storage. J Mater Chem A 4:801–806
Liu C, Lu XH, Yu G, Feng X, Zhang QT, Xu ZZ (2005) Role of an intermediate phase in solid state reaction of hydrous titanium oxide with potassium carbonate. Mater Chem Phys 94:401–407
Liu HW, Yang DJ, Zheng ZF, Ke XB, Waclawik E, Zhu HY, Frost RL (2010) A Raman spectroscopic and TEM study on the structural evolution of Na2Ti3O7 during the transition to Na2Ti6O13. J Raman Spectrosc 41:1331–1337
Lu XH, Zheng DZ, Zhai T, Liu ZQ, Huang YY, Xie SL, Tong YX (2011) Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ Sci 4:2915–2921
Luo YS, Kong DZ, Luo JS, Chen S, Zhang DY, Qiu KW, Qi XY, Zhang H, Li CM, Yu T (2013) Hierarchical TiO2 nanobelts@MnO2 ultrathin nanoflakes core–shell array electrode materials for supercapacitors. RSC Adv 3:14413–14422
Ma HL, Yang JY, Dai Y, Zhang YB, Lu B, Ma GH (2007) Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser. Appl Surf Sci 253:7497–7500
Ma LX, Zhao BL, Wang XS, Yang JF, Zhang XX, Zhou Y, Chen JT (2018) MoS2 Nanosheets vertically grown on carbonized corn stalks as lithium-ion battery anode. ACS Appl Mater Interfaces 10:22067–22073
Miyauchi M, Tokudome H, Toda Y, Kamiya T, Hosono H (2006) Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction. Appl Phys Lett 89:043114
Pazhamalai P, Krishnamoorthy K, Mariappan VK, Kim SJ (2019) Blue TiO2 nanosheets as a high-performance electrode material for supercapacitors. J Colloid Interface Sci 536:62–70
Peng HH, Jing C, Chen J, Jiang DY, Liu XY, Dong BQ, Dong F, Li SC, Zhang YX (2019) Crystal structure of nickel manganese-layered double hydroxide@cobaltosic oxides on nickel foam towards high-performance supercapacitors. CrystEngComm 21:470–477
Ponomarev E, Pásztor Á, Waelchli A, Scarfato A, Ubrig N, Renner C, Morpurgo AF (2018) Hole transport in exfoliated monolayer MoS2. ACS Nano 12:2669–2676
Qorbani M, Khajehdehi O, Sabbah A, Naseri N (2019) Ti-rich TiO2 tubular nanolettuces by electrochemical anodization for all-solid-state high-rate supercapacitor devices. ChemSusChem 12:1–11
Ramadoss A, Kim SJ (2014) Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes. Electrochim Acta 136:105–111
Salari M, Aboutalebi SH, Chidembo AT, Nevirkovets IP, Konstantinov K, Liu HK (2012) Enhancement of the electrochemical capacitance of TiO2 nanotube arrays through controlled phase transformation of anatase to rutile. Phys Chem Chem Phys 14:4770–4779
Shan TT, Xin S, You Y, Cong HP, Yu SH, Manthiram A (2016) Combining nitrogen-doped graphene sheets and MoS2: a unique film-foam-film structure for enhanced lithium storage. Angew Chem Int Ed 55:12783–12788
Shin E, Jin S, Kim J, Chang SJ, Jun BH, Park KW, Hong J (2016) Preparation of K-doped TiO2 nanostructures by wet corrosion and their sunlight-driven photocatalytic performance. Appl Surf Sci 379:33–38
Tamilselvan A, Balakumar S (2016) Anatase TiO2 nanotube by electrochemical anodization method: effect of tubes dimension on the supercapacitor application. Ionics 22:99–105
Teng YQ, Zhao HL, Zhang ZJ, Li ZL, Xia Q, Zhang Y, Zhang LN, Du XF, Du ZH, Lv PP, Świerczek K (2016) MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10:8526–8535
Wang PP, Sun HY, Ji YJ, Li WH, Wang X (2014) Three-dimensional assembly of single-layered MoS2. Adv Mater 26:964–969
Wang LN, Ma Y, Yang M, Qi YX (2017) Titanium plate supported MoS2 nanosheet arrays for supercapacitor application. Appl Surf Sci 396:1466–1471
Wang C, Zhou P, Wang ZY, Liu YY, Wang P, Qin XY, Zhang XY, Dai Y, Whangbo MH, Huang BB (2018) TiN nanosheet arrays on Ti foils for high-performance supercapacitance. RSC Adv 8:12841–12847
Wang XX, Tian JH, Cheng X, Na R, Wang DD, Shan ZQ (2018) Chitosan-induced synthesis of hierarchical flower ridge-like MoS2/N-doped carbon composites with enhanced lithium storage. ACS Appl Mater Interfaces 10:35953–35962
Wei Z, Hsu C, Almakrami H, Lin GZ, Hu J, Jin XF, Agara E, Liu FQ (2019) Ultra-high-aspect-ratio vertically aligned 2D MoS2-1D TiO2 nanobelt heterostructured forests for enhanced photoelectrochemical performance. Electrochim Acta 316:173–180
Wu H, Xu C, Xu J, Lu LF, Fan ZY, Chen XY, Song Y, Li DD (2013) Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnology 24:455401
Wu ZX, Lei W, Wang J, Liu R, Xia KD, Xuan CJ, Wang DL (2017) Various structured molybdenum-based nanomaterials as advanced anode materials for lithium ion batteries. ACS Appl Mater Interfaces 9:12366–12372
Xu X, Fan ZY, Ding SJ, Yu DM, Du YP (2014) Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage. Nanoscale 6:5245–5250
Ye JB, Ma L, Chen WX, Ma YJ, Huang FH, Gao C, Lee JY (2015) Supramolecule-mediated synthesis of MoS2/reduced graphene oxide composites with enhanced electrochemical performance for reversible lithium storage. J Mater Chem A 3:6884–6893
Zang XB, Li X, Zhu M, Li XM, Zhen Z, He YJ, Wang KL, Wei JQ, Kang FY, Zhu HW (2015) Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 7:7318–7322
Zaremba T, Witkowska D (2010) Methods of manufacturing of potassium titanate fibres and whiskers. A review. Mater Sci 28:25–41
Zhang J, Li MJ, Feng ZH, Chen J, Li C (2006) UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J Phys Chem B 110:927–935
Zhang JF, Wang Y, Qin YQ, Yu CP, Cui LH, Shu X, Cui JW, Zheng HM, Zhang Y, Wu YH (2017) A facile one-step synthesis of Mn3O4 nanoparticles-decorated TiO2 nanotube arrays as high performance electrode for supercapacitors. J Solid State Chem 246:269–277
Zhang DG, Pan AQ, Zhong XL, Song HJ, Zhang Y, Tang Y, Wang JB (2018) MoS2 nanosheets uniformly coated TiO2 nanowire arrays with enhanced electrochemical performances for lithium-ion batteries. J Alloys Compd 758:91–98
Zhao B, Lin L, He D (2013) Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment. J Mater Chem A 1:1659–1668
Zhou XS, Wan LJ, Guo YG (2013) Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. Chem Commun 49:1838–1840
Zhou J, Guo M, Wang LL, Ding YB, Zhang ZZ, Tang YH, Liu CB, Luo SL (2019) 1 T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor. Chem Eng J 366:163–171