Construction of Hohenbuehelia serotina polysaccharides-mucin nanoparticles and their sustain-release characteristics under simulated gastrointestinal digestion in vitro
Tài liệu tham khảo
Chen, 2018, Int. J. Biol. Macromol., 115, 77, 10.1016/j.ijbiomac.2018.04.056
Zhao, 2020, Int. J. Biol. Macromol., 151, 576, 10.1016/j.ijbiomac.2020.02.015
Huo, 2020, Food Chem., 330, 10.1016/j.foodchem.2020.127257
Biao, 2020, Food Chem., 315, 10.1016/j.foodchem.2020.126266
Shi, 2016, Int. J. Biol. Macromol., 92, 37, 10.1016/j.ijbiomac.2016.06.100
Yu, 2018, Carbohydr. Polym., 183, 91, 10.1016/j.carbpol.2017.12.009
Yuan, 2020, Carbohydr. Polym., 236
Zhu, 2019, Food Hydrocolloid., 87, 952, 10.1016/j.foodhyd.2018.09.014
Li, 2020, Carbohydr. Polym., 239, 10.1016/j.carbpol.2020.116194
Achari, 2018, J. Agric. Food Chem., 66, 8647, 10.1021/acs.jafc.8b00691
Yang, 2020, Food Hydrocolloid., 112
Schlich, 2020, Food Chem., 310, 10.1016/j.foodchem.2019.125950
Wong, 2017, Food Chem. Toxicol., 109, 746, 10.1016/j.fct.2017.07.006
Chang, 2019, Food Chem., 280, 65, 10.1016/j.foodchem.2018.11.124
Cai, 2020, Food Chem. Toxicol., 136, 10.1016/j.fct.2019.111099
Chen, 2016, J. Agric. Food Chem., 64, 5053, 10.1021/acs.jafc.6b01176
Wang, 2019, Int. J. Biol. Macromol., 121, 862, 10.1016/j.ijbiomac.2018.10.118
Wang, 2019, Int. J. Biol. Macromol., 127, 18, 10.1016/j.ijbiomac.2018.12.267
Li, 2013, Carbohydr. Polym., 94, 829, 10.1016/j.carbpol.2013.02.015
Antonissen, 2015, J. Agric. Food Chem., 63, 10846, 10.1021/acs.jafc.5b04119
Martínez-Maqueda, 2012, J. Agric. Food Chem., 60, 8600, 10.1021/jf301279k
Hwang, 2018, Food Chem. Toxicol., 118, 880, 10.1016/j.fct.2018.06.039
Zhou, 2020, Food Chem., 329, 10.1016/j.foodchem.2020.127158
Cabezas, 2019, Food Hydrocolloid., 95, 445, 10.1016/j.foodhyd.2019.04.040
Herrera, 2017, Food Hydrocolloid., 66, 237, 10.1016/j.foodhyd.2016.11.026
Mohammadi, 2021, Int. J. Biol. Macromol., 172, 162, 10.1016/j.ijbiomac.2020.12.208
Alzate, 2019, Food Hydrocolloid., 95, 540, 10.1016/j.foodhyd.2019.04.066
Hu, 2019, Int. J. Biol. Macromol., 135, 501, 10.1016/j.ijbiomac.2019.05.191
Wang, 2021, Food Hydrocolloid., 117, 10.1016/j.foodhyd.2021.106663
Wang, 2019, Food Funct., 10, 1295, 10.1039/C8FO01965G
Kenechukwu, 2017, Eur. J. Pharm. Sci., 111, 358, 10.1016/j.ejps.2017.10.002
Mumuni, 2020, Carbohydr. Polym., 229, 10.1016/j.carbpol.2019.115506
Xue, 2013, J. Biol. Chem., 288, 14221, 10.1074/jbc.M113.465609
Dimov, 2015, J. Genet. Syndr. Gene Ther., 6, 257, 10.4172/2157-7412.1000257
Trabelsi, 2009, Biotechnol. Bioprocess Eng., 14, 27, 10.1007/s12257-008-0102-8
Celli, 2020, Food Chem., 309, 10.1016/j.foodchem.2019.125795
Tsirigotis-Maniecka, 2018, Int. J. Biol. Macromol., 125, 124, 10.1016/j.ijbiomac.2018.12.017
Teng, 2012, J. Agric. Food Chem., 60, 2712, 10.1021/jf205238x
Lewis, 2013, Vib. Spectrosc., 69, 21, 10.1016/j.vibspec.2013.09.001
Perez, 2014, Food Chem., 158, 66, 10.1016/j.foodchem.2014.02.073
Dai, 2016, J. Agric. Food Chem., 64, 5539, 10.1021/acs.jafc.6b01213
Wu, 2018, J. Agric. Food Chem., 66, 7006, 10.1021/acs.jafc.8b01428
Akhter, 2016, ACS Biomater. Sci. Eng., 2, 96, 10.1021/acsbiomaterials.5b00413
Ambort, 2012, Proc. Natl. Acad. Sci., 109, 5645, 10.1073/pnas.1120269109
Pigman, 2010, FEBS J., 32, 148
Perez-Vilar, 1999, J. Biol. Chem., 274, 31751, 10.1074/jbc.274.45.31751
Moro, 2001, J. Agric. Food Chem., 49, 4784, 10.1021/jf001132e
Chen, 2019, J. Agric. Food Chem., 67, 6574, 10.1021/acs.jafc.9b02028
R. Beck, S. Guterres, A. Pohlmann, Chapter 3 (2011) 49–68.
Qin, 2018, J. Agric. Food Chem., 66, 4373, 10.1021/acs.jafc.8b00388
Dong, 1991, J. Control. Release, 17, 217, 10.1016/0168-3659(91)90140-9
Tai, 2019, Food Chem., 293, 92, 10.1016/j.foodchem.2019.04.077
Zhang, 2018, J. Agric. Food Chem., 66, 4208, 10.1021/acs.jafc.7b05889
Liu, 2016, RSC Adv., 6, 85621, 10.1039/C6RA19886D