Constructing quantum logic gates using q-deformed harmonic oscillator algebras
Tóm tắt
We study two-level q-deformed angular momentum states, and using q-deformed harmonic oscillators, we provide a framework for constructing qubits and quantum gates. We also present the construction of some basic one-qubit and two-qubit quantum logic gates.
Từ khóa
Tài liệu tham khảo
Drinfeld, V.G.: Quantum groups. In: Proceedings of International Congress of Mathematicians, Berkeley, California, USA. Academic Press, p. 798 (1986)
Woronowicz, S.L.: Compact Matrix Preudogroups. Commun. Math. Phys. 111, 613 (1987)
Manin, Y.I.: Quantum Groups and Non-commutative Geometry. Centre De Recherches Math, Montreal (1988)
Arik, M., Baykal, A.: Inhomogeneous quantum groups for particle algebras. J. Math. Phys. 45, 4207 (2004)
Altintas, A.A., Arik, M., Atakishiyev, N.M.: On unitary transformations of orthofermion algebra that form a quantum group. Mod. Phys. Lett. A 21, 1463 (2006)
Altintas, A.A., Arik, M.: Quantum groups of fermionic algebras cent. Eur. J. Phys. 5, 70 (2007)
Altintas, A.A., Arik, M.: Inhomogeneous quantum group generalization of IO(2n, C) and ISp(2n, C): Mod. Phys. Lett. A 23, 617 (2008)
Altintas, A.A., Arik, M.: The inhomogeneous invariance quantum supergroup of supersymmetry algebra. Phys. Lett. A. 372, 5955 (2008)
Altintas, A.A., Arik, M., Arikan, A.S.: The inhomogeneous quantum invariance group of the multi-dimensional q-deformed boson algebra. Cent. Eur. J. Phys. 8, 131 (2010)
Alim, H., Altintas, A.A., Arik, M., Arikan, A.S.: The inhomogeneous quantum invariance group of the two parameter deformed boson algebra. Int. J. Theor. Phys. 49, 633 (2010)
Altintas, A.A., Arik, M., Arikan, A.S.: The inhomogeneous invariance quantum group of q-deformed boson algebra with continuous parameters. J. Nonlinear Math. Phys. 18, 121 (2011)
Altintas, A.A., Arik, M., Arikan, A.S., Dil, E.: Inhomogeneous quantum invariance group of multi-dimensional multi-parameter deformed boson algebra. Chin. Phys. Lett. 29, 010203 (2012)
Altintas, A.A.: Bosonic algebras and their inhomogeneous invariance quantum groups. J. Phys. Conf. Ser. 343, 012010 (2012)
Arik, M., Coon, D.D.: Hilbert spaces of analytic functions and generalized coherent states. J. Math. Phys. 17, 524 (1976)
Arik, M., Coon, D.D., Lam, Y.M.: Operator algebra of dual resonance model. J. Math. Phys. 9, 1776 (1975)
Macfarlane, A.J.: On q-analogues of the quantum harmonic oscillator and the quantum group \(SU(2)_q\). J. Phys. A 22, 4581 (1989)
Biedenharn, L.C.: The quantum group \(SU_q(2)\) and a q-analogue of the boson operators. J. Phys. A 22, L873 (1989)
Bonatsos, D., Daskoloyamis, C.: Generalized deformed oscillators for vibrational spectra of diatomic molecules. Phys. Rev A 46, 75 (1992)
Bonatsos, D., Lewis, D., Raychev, P.P., Terziev, P.A.: Deformed harmonic oscillators for metal clusters: analytic properties and supershells. Phys. Rev. A 65, 033203 (2002)
Georgieva, A.I., Sviratcheva, K.D., Ivanov, M.I., Draayer, J.P.: q-Deformation of symplectic dynamical systems in algebraic models of nuclear structure. Phys. Atom. Nucl. 74, 884 (2011)
Berrada, K., El Baz, M., Eleuch, H., Hassouni, Y.: Bipartite entanglement of nonlinear quantum systems in the context of the q-Heisenberg Weyl algebra. Quantum Inf. Proc. 11, 351 (2012)
Berrada, K., Hassouni, Y.: Maximal entanglement of bipartite spin states in the context of quantum algebra. EPJD 61, 513 (2011)
Liu, Y.X., Sun, C.P., Yu, S.X., Zhou, D.L.: Semiconductor-cavity QED in high-Q regimes with q-deformed bosons. PRA 63, 023802 (2001)
Sharma, S.S.: Quantum logic gates with ion trap in an optical cavity. IJPMA 18, 2221 (2003)
Hasegawa, H.: Quantum Fisher information and q-deformed relative entropies. PTP 162, 183 (2006)
Schwinger, J., Englert, B.-G.: Quantum Mechanics: Symbolism of Atomic Measurements. Springer, Berlin (2001)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Information. Cambridge University Press, Cambridge (2000)
Gagopadhyay, D.: The CNOT quantum logic gate uing q-deformed oscillators. Int. J. Quantum Inf. 06, 471 (2008)
Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219 (1982)
Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87, 032331 (2013)
Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic W or Bell states. Quantum Inf. Proc. 12, 2965 (2013)
Biedenharn, L.C., Lohe, M.A.: Quantum Group Symmetry and q Tensor Algebras. World Scientific, Singapore (1995)
Filippov, A.T., Gagopadhyay, D., Isaev, A.P.: Harmonic oscillator realization of the canonical q-transformation. J. Phys. A 24, L63 (1991)