Tạo dựng thụ thể peptide-1 giống glucagon gắn với các dẫn xuất của GFP để quan sát sự tương tác giữa các protein trong tế bào sống

Springer Science and Business Media LLC - Tập 37 - Trang 2749-2755 - 2009
Aljoša Bavec1
1Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

Tóm tắt

Thụ thể peptide-1 giống glucagon (thụ thể GLP-1) đóng vai trò trung tâm trong các tác động chống tiểu đường quan trọng lên các mô ngoại vi. Nó dường như là một trong những mục tiêu điều trị hứa hẹn nhất cho việc điều trị đái tháo đường loại 2. Một cách bất ngờ, rất ít thông tin được biết đến về các cơ chế tế bào điều chỉnh chức năng thụ thể trong các tế bào sống. Một trong những phương pháp để nghiên cứu động lực học thụ thể là sử dụng các protein huỳnh quang gắn thẻ. Trong nghiên cứu này, thụ thể GLP-1 gắn YFP (YFP-GLP-1) và thụ thể GLP-1 gắn CFP (CFP-GLP-1) được xây dựng để hình dung sự tương tác giữa các protein trong các tế bào sống và được phân bố trong tế bào CHO. Các tế bào biểu hiện thụ thể YFP-GLP-1 và CFP-GLP-1 cho thấy sự gia tăng cAMP đặc trưng do GLP-1 điều biến, tương tự như các tế bào biểu hiện thụ thể GLP-1 kiểu hoang dã. Điều này có nghĩa là cả hai loại thụ thể đều hoạt động và được phân bố ở màng plasma.

Từ khóa

#thụ thể peptide-1 giống glucagon #tương tác giữa protein #tế bào sống #động lực học thụ thể #đái tháo đường loại 2

Tài liệu tham khảo

Dillon JS, Tanizawa Y, Wheeler MB, Leng XH, Ligon BB, Rabin DU, Yoo-Warren H, Permutt MA, Boyd AE III (1993) Cloning and functional expression of the human glucagon-like peptide-1 (GLP-1) receptor. Endocrinology 133:1907–1910 Thorens B (1992) Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide-1. Proc Natl Acad Sci USA 89:8641–8645 Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2(8571):1300–1304 Barragan JM, Rodriguez RE, Blazquez E (1994) Changes in arterial blood pressure and heart rate induced by glucagon-like peptide-1-(7–36) amide in rats. Am J Physiol 266:459–466 Benito E, Blazquez E, Bosch MA (1998) Glucagon-like peptide-1-(7–36)amide increases pulmonary surfactant secretion through a cyclic adenosine 3′, 5′-monophosphate-dependent protein kinase mechanism in rat type II pneumocytes. Endocrinology 139(5):2363–2368 Navarro M, Rodriquez de Fonseca F, Alvarez E, Chowen JA, Zueco JA, Gomez R, Eng J, Blázquez E (1996) Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT-2, and glucokinase mRNAs in rat hypothalamic cells: evidence for a role of GLP-1 receptor agonists as an inhibitory signal for food and water intake. J Neurochem 67(5):1982–1991. doi:10.1046/j.1471-4159.1996.67051982.x During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X, Bland RJ, Klugmann M, Banks WA, Drucker DJ, Haile CN (2003) Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 9(9):1173–1179. doi:10.1038/nm919 Brubaker PL, Drucker DJ (2004) Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145:2653–2659. doi:10.1210/en.2004-0015 Gutniak M, Orskov C, Holst JJ, Ahrén B, Efendic S (1992) Antidiabetogenic effect of glucagon-like peptide-1 (7–36)amide in normal subjects and patients with mellitus. N Engl J Med 326:1316–1322 Toft-Nielsen MB, Madsbad S, Holst JJ (1999) Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care 22(7):1137–1143. doi:10.2337/diacare.22.7.1137 Eng J, Kleinman WA, Singh L, Singh G, Raufman JP (1992) Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem 267:7402–7405 Thorens B, Porret A, Bühler L, Deng SP, Morel P, Widmann C (1993) Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9–39) an antagonist of the receptor. Diabetes 42:1678–1682 Göke R, Conlon JM (1988) Receptors for glucagon-like peptide-1(7–36) amide on rat insulinoma-derived cells. J Endocrinol 116:357–362. doi:10.1677/joe.0.1160357 Wheeler MB, Lu M, Dillon JS, Leng XH, Chen C, Boyd AE III (1993) Functional expression of the rat glucagon-like peptide-1 receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology 133:57–62 Lin YF, Jan YN, Jan LY (2000) Regulation of ATP-sensitive potassium channel function by protein kinase A-mediated phosphorylation in transfected HEK293 cells. EMBO J 19:942–955. doi:10.1093/emboj/19.5.942 Satin LS (2000) Localized calcium influx in pancreatic b-cells: its significance for Ca2+-dependent insulin secretion from the islets of Langerhans. Endocrine 13:251–262. doi:10.1385/ENDO:13:3:251 Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF (1999) cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic ß-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7–37). J Biol Chem 274:14147–14156 Edvell A, Lindstrom P (1999) Initiation of increased pancreatic islet growth in young normoglycemic mice (Umea +/?). Endocrinology 140:778–783 Buteau J, Roduit R, Susini S, Prentki M (1999) Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duotenal homeobox gene 1 (PDX-1) DNA binding activity in ß(INS-1)-cells. Diabetologia 42:856–864. doi:10.1007/s001250051238 Montrose-Rafizadeh C, Avdonin P, Garant MJ, Rodgers BD, Kole S, Yang H, Levine MA, Schwindinger W, Bernier M (1999) Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells. Endocrinology 140:1132–1140 Bavec A, Hällbrink M, Langel Ü, Zorko M (2003) Different role of intracellular loops of glucagon like peptide-1 receptor in G-protein coupling. Regul Pept 111:137–144. doi:10.1016/S0167-0115(02)00282-3 Takhar S, Gyomorey S, Su RC, Mathi SK, Li X, Wheeler MB (1996) The third cytoplasmic domain of the GLP-1(7–36 amide) receptor is required for coupling to the adenylyl cyclase system. Endocrinology 137:2175–2178 Bavec A, Jiang Y, Langel Ü, Zorko M (2007) Role of cysteine 341 and arginine 348 of GLP-1 receptor in G-protein coupling. Mol Biol Rep 34:53–60. doi:10.1007/s11033-006-9015-9 Wang Y, Shyy JY, Chien S (2008) Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu Rev Biomed Eng 10:1–38. doi:10.1146/annurev.bioeng.010308.161731 Mariggiò S, Bavec A, Natale E, Zizza P, Salmona M, Corda D, Di Girolamo M (2006) Galpha13 mediates activation of the cytosolic phospholipase A2alpha through fine regulation of ERK phosphorylation. Cell Signal 18:2200–2208. doi:10.1016/j.cellsig.2006.05.003 Bavec A (2004) Novel features of amphiphilic peptide Mas7 in signalling via heterotrimeric G-proteins. J Pept Sci 10:691–699. doi:10.1002/psc.579 Bavec A (2004) Immunoassay for visualization of protein–protein interactions on Ni-nitrilotriacetate support: example of a laboratory exercise with recombinant heterotrimeric Gαi2ß1γ2 tagged by hexahistidine from sf9 cells. Biochem Mol Biol Educ 32:258–262. doi:10.1002/bmb.2004.494032040380 Göke R, Just R, Lankat-Buttgereit B, Göke B (1994) Glycosylation of the GLP-1 receptor is a prerequisite for regular receptor function. Peptides 15:675–681. doi:10.1016/0196-9781(94)90095-7 Limon A, Reyes-Ruiz JM, Eusebi F, Miledi R (2007) Properties of GluR3 receptors tagged with GFP at the amino or carboxyl terminus. Proc Natl Acad Sci U S A 104:15526–15530. doi:10.1073/pnas.0706773104 Palma E, Mileo AM, Martinez-Torres A, Eusebi F, Miledi R (2002) Some properties of human neuronal alpha 7 nicotinic acetylcholine receptors fused to the green fluorescent protein. Proc Natl Acad Sci U S A 99:3950–3955. doi:10.1073/pnas.052699299 Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J biol chem 277:39873–39879. doi:10.1074/jbc.M207008200 Martinez-Torres A, Miledi R (2001) Expression of gamma-aminobutyric acid rho 1 and rho 1 Delta 450 as gene fusions with the green fluorescent protein. Proc Natl Acad Sci U S A 98:1947–1951. doi:10.1073/pnas.031584898 Bueno OF, Robinson LC, Alvarez-Hernandez X, Leidenheimer NJ (1998) Functional characterization and visualization of a GABAA receptor-GFP chimera expressed in Xenopus oocytes. Brain Res Mol Brain Res 59:165–177. doi:10.1016/S0169-328X(98)00129-6 Salapatek AM, MacDonald PE, Gaisano HY, Wheeler MB (1999) Mutations to the third cytoplasmic domain of the glucagon-like peptide 1 (GLP-1) receptor can functionally uncouple GLP-1-stimulated insulin secretion in HIT-T15 cells. Mol Endocrinol 13:1305–1317 Syme CA, Zhang L, Bisello A (2006) Caveolin-1 regulates cellular trafficking and function of the glucagon-like peptide 1 receptor. Mol Endocrinol 20:3400–3411. doi:10.1210/me.2006-0178 Debeljak N, Sytkowski AJ (2008) Erythropoietin: new approaches to improved molecular designs and therapeutic alternatives. Curr Pharm Des 14:1302–1310 Golicnik M, Stojan J (2004) Slow-binding inhibition. Biochem Mol Biol Educ 32:228–235. doi:10.1002/bmb.2004.494032040358