Constructing dummy query sequences to protect location privacy and query privacy in location-based services

Springer Science and Business Media LLC - Tập 24 Số 1 - Trang 25-49 - 2021
Zongda Wu1, Guiling Li2, Shigen Shen1, Xinze Lian3, Enhong Chen4, Guandong Xu5
1Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China
2School of Computer Science, China University of Geosciences, Wuhan, China
3Oujiang College, Wenzhou University, Wenzhou, China
4Sch. of Comput. Sci. & Technol., Univ. of Sci. & Technol. of China, HeFei, China
5Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Peng, T., Liu, Q., Wang, G.: Enhanced location privacy preserving scheme in location-based services. IEEE Syst. J. 11(1), 219–230 (2017)

Zeng, S., Mu, Y., He, M., et al.: New approach for privacy-aware location-based service communications. Wirel. Pers. Commun. 11(2), 1057–1073 (2018)

Li, Z., Pei, Q., Markwood, I., et al.: Location privacy violation via GPS-agnostic smart phone car tracking. IEEE Trans. Veh. Technol. 67(6), 5042–5053 (2018)

Ghaffari, M., Ghadiri, N., Manshaei, M.H., et al.: P4QS: A peer to peer privacy preserving query service for location-based mobile applications. IEEE Trans. Veh. Technol. 66(10), 9458–9469 (2017)

Kalaiarasy, C., Sreenath, N., Amuthan, A.: Location privacy preservation in VANET using mix zones - a survey. Proc ICCCI , 1–5 (2019)

Ding, X., Yang, W., Choo, R., et al.: Privacy-preserving similarity joins using MapReduce. Inf. Sci. 493, 20–33 (2019)

Dewri, R., Thurimella, R.: Mobile local search with noisy locations. Pervasive Mob Comput 32, 78–92 (2016)

Zhang, L., Li, J., Yang, S., et al.: Privacy preserving in cloud environment for obstructed shortest path query. Wirel. Pers. Commun. 96(2), 2305–2322 (2017)

Niu, B., Li, Q., Zhu, Q., et al.: Achieving k-anonymity in privacy-aware location-based services (2014)

Wu, Z., Li, G., Liu, Q., Xu, G., Chen, E.: Covering the sensitive subjects to protect personal privacy in personalized pecommendation. IEEE Trans. Serv. Comput. 11(3), 493–506 (2018)

Li, F., Zhang, C., Niu, B., et al.: Efficient scheme for user’s trajectory privacy. Chin. J. Commun. 36(12), 114–123 (2015)

Ravi, N., Krishna, C., Koren, I.: Enhancing vehicular anonymity in ITS: a new scheme for mix zones and their placement. IEEE Trans. Veh. Technol. 68 (11), 10372–10381 (2019)

Palanisamy, B., Liu, L., Lee, K., et al.: Anonymizing continuous queries with delay-tolerant mix-zones over road networks. Distrib Parallel Databases 32(1), 91–118 (2014)

Memon, I., Ali, Q., Zubedi, A., et al.: DPMM: Dynamic Pseudonym-based multiple mix-zones generation for mobile traveler. Multimed Tools Appl, 1–30 (2016)

Zhao, D., Jin, Y., Zhang, K., et al.: EPLA: efficient personal location anonymity. GeoInformatica 22(1), 29–47 (2018)

Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity: Architecture and algorithms. IEEE Trans. Mob. Comput. 7(1), 1–18 (2008)

Xue, D., Wu, L., Li, H., et al.: A novel destination prediction attack and corresponding location privacy protection method in geo-social networks. Int. J. Distrib. Sens. Netw. 13(1), 1–16 (2017)

Soma, S., Hashem, T., Cheema, M., et al.: Trip planning queries with location privacy in spatial databases. World Wide Web 20, 205–236 (2017)

Agir, B., Papaioannou, T., Narendula, R., et al.: User-side adaptive protection of location privacy in participatory sensing. GeoInformatica 18 (1), 165–191 (2014)

Dewri, R., Thurimella, R.: Exploiting service similarity for privacy in location-based search queries. IEEE Trans. Parallel Distrib. Syst. 25(2), 374–383 (2014)

Andrs, M.E., Bordenabe, N.E., Chatzikokolakis, K., et al.: Geo-indistinguishability: Differential privacy for location-based systems. Proc. CCS, 901–914 (2013)

Mendes, R., Cunha, M., Vilela, J.: Impact of frequency of location reports on the privacy level of geo-indistinguishability. Proc. Priv. Enhanc. Technol. 2, 379–396 (2020)

Dong, X., Zhang, T., Lu, D., et al.: Preserving geo-indistinguishability of the primary user in dynamic spectrum sharing. IEEE Trans. Veh. Technol. 68(9), 8881–8892 (2019)

Lai, J., Mu, Y., Guo, F., et al.: Privacy-enhanced attribute-based private information retrieval. Inf. Sci. 454, 275–291 (2018)

Mei, Z., Zhu, H., Cui, Z., et al.: Executing multi-dimensional range query efficiently and flexibly over outsourced ciphertexts in the cloud. Inf. Sci. 432, 79–96 (2018)

Zhang, L., Tang, S., Chen, J., et al.: Two-factor remote authentication protocol with user anonymity based on elliptic curve cryptography. Wirel. Pers. Commun. 81(1), 53–75 (2015)

Ding, X., Liu, P., Jin, H.: Privacy-preserving multi-keyword top-k similarity search over encrypted Data. IEEE Trans. Depend. Secure Comput. 16(2), 344–357 (2019)

Khoshgozaran, A., Shirani-Mehr, H., Shahabi, C.: Blind evaluation of location based queries using space transformation to preserve location privacy. GeoInformatica 17(4), 599–634 (2013)

Meng, W., Lee, B., Xing, X., et al.: Trackmeornot: Enabling flexible control on web tracking. Proc. of WWW, 99–109 (2016)

Wu, Z., Shi, J., Lu, C., et al.: Constructing plausible innocuous pseudo queries to protect user query intention. Inf. Sci. 325, 215–226 (2015)

Wu, Z., Li, R., Xie, J., et al.: A user sensitive subject protection approach for book search service. J. Assoc. Inf. Sci. Technol. 71(2), 183–195 (2020)

Leskovec, J., Sosic, R.: SNAP: A general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol. 8(1), 1 (2016)

Haus, M., Waqas, M., Ding, A., et al.: Security and privacy in device-to-device (D2D) communication: a review. IEEE Commun. Surv. Tutor. 19(2), 1054–1079 (2017)