Constructible sheaves on nilpotent cones in rather good characteristic

Selecta Mathematica - Tập 23 - Trang 203-243 - 2016
Pramod N. Achar1, Anthony Henderson2, Daniel Juteau3, Simon Riche4
1Department of Mathematics, Louisiana State University, Baton Rouge, USA
2School of Mathematics and Statistics, University of Sydney, Sydney, Australia
3Laboratoire de mathématiques Nicolas Oresme, Université de Caen, Caen Cedex, France
4Université Blaise Pascal - Clermont-Ferrand II, Laboratoire de Mathématiques, CNRS, UMR 6620, Aubière Cedex, France

Tóm tắt

We study some aspects of modular generalized Springer theory for a complex reductive group G with coefficients in a field $$\Bbbk $$ under the assumption that the characteristic $$\ell $$ of $$\Bbbk $$ is rather good for G, i.e. $$\ell $$ is good and does not divide the order of the component group of the centre of G. We prove a comparison theorem relating the characteristic- $$\ell $$ generalized Springer correspondence to the characteristic-0 version. We also consider Mautner’s characteristic- $$\ell $$ ‘cleanness conjecture’; we prove it in some cases; and we deduce several consequences, including a classification of supercuspidal sheaves and an orthogonal decomposition of the equivariant derived category of the nilpotent cone.

Tài liệu tham khảo

Achar, P., Henderson, A., Juteau, D., Riche, S.: Modular generalized Springer correspondence I: the general linear group. J. Eur. Math. Soc. Preprint arXiv:1307.2702 Achar, P., Henderson, A., Juteau, D., Riche, S.: Modular generalized Springer correspondence II: classical groups. J. Eur. Math. Soc. Preprint arXiv:1404.1096 Achar, P., Henderson, A., Juteau, D., Riche, S.: Modular generalized Springer correspondence III: exceptional groups. Preprint arXiv:1507.00401 Achar, P., Henderson, A., Juteau, D., Riche, S.: Weyl group actions on the Springer sheaf. Proc. Lond. Math. Soc. 108(6), 1501–1528 (2014) Beĭlinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers, Analyse et topologie sur les espaces singuliers, I (Luminy,1981), Astérisque. Soc. Math. Paris, France 100, 5–171 (1982) Beĭlinson, A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9, 473–527 (1996) Bernstein, J., Lunts, V.: Equivariant sheaves and functors, Lecture Notes in Math. 1578, Springer (1994) Bonnafé, C.: Actions of relative Weyl groups. I. J. Group Theory 7(1), 1–37 (2004) Collingwood, D.H., McGovern, W.M.: Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold Co., New York (1993) Curtis, C.W., Reiner, I.: Methods of Representation Theory, vol. II. Wiley, New York (1987) Geck, M., Hiss, G., Luebeck, F., Malle, G., Pfeiffer, G.: CHEVIE: a system for computing and processing generic character tables. Appl. Algebra Eng. Comm. Comput. 7, 175–210 (1996) Juteau, D., Lecouvey, C., Sorlin, K.: Springer basic sets and modular Springer correspondence for classical types. Preprint arXiv:1410.1477 Juteau, D.: Modular Springer correspondence, decomposition matrices and basic sets. Preprint arXiv:1410.1471 Lusztig, G.: Intersection cohomology complexes on a reductive group. Invent. Math. 75, 205–272 (1984) Lusztig, G.: Character sheaves II. Adv. Math. 57(3), 226–265 (1985) Lusztig, G.: Character sheaves V. Adv. Math. 61(2), 103–155 (1986) Lusztig, G.: Cuspidal local systems and graded Hecke algebras. II, Representations of groups (Banff, AB, 1994), CMS Conf. Proc. Am. Math. Soc. 16, 217–275 (1995) Mautner, C.: A geometric Schur functor. Selecta Math. (N.S.) 20, 961–977 (2014) Michel, J.: The development version of the CHEVIE package of GAP3. J. Algebra 435, 308–336 (2015) Mostow, G.D.: Fully reducible subgroups of algebraic groups. Am. J. Math. 78, 200–221 (1956) Rider, L., Russell, A.: Perverse sheaves on the nilpotent cone and Lusztig’s generalized Springer correspondence. In: Proceedings of Southeastern Lie Theory Workshop Series. Preprint arXiv:1409.7132