Constructal optimization for an insulating wall combining heat flow, strength and volume
Tài liệu tham khảo
Bejan, 2000
Bejan, 2005
Bejan, 2006, Constructal theory of generation of configuration in nature and engineering, J. Appl. Phys., 100, 041301, 10.1063/1.2221896
Bejan, 2006, Along with constructal theory
Bejan, 2007
Bejan, 2008
Bejan, 2009
Chen, 2012, Progress in study on constructal theory and its applications, Sci. China Technol. Sci., 55, 802, 10.1007/s11431-011-4701-9
Bejan, 1996, Street network theory of organization in nature, J. Adv. Transp., 30, 85, 10.1002/atr.5670300207
Reis, 2006, Constructal view of scaling laws of river basins, Geomorphology, 78, 201, 10.1016/j.geomorph.2006.01.015
Reis, 2004, Constructal theory of flow architecture of the lungs, Med. Phys., 31, 1135, 10.1118/1.1705443
Miguel, 2009, The principle that generates dissimilar patterns inside aggregates of organisms, Phys. A, 388, 727, 10.1016/j.physa.2008.11.013
Bejan, 2010, The constructal law of design and evolution in nature, Philos. Trans. R. Soc. B-Biol. Sci., 365, 1335, 10.1098/rstb.2009.0302
Clausse, 2011, Climate change, in the framework of the constructal law, Earth Sys. Dyn. Discuss., 2, 241, 10.5194/esdd-2-241-2011
Bejan, 2011, The constructal law and the design of the biosphere: nature and globalization, Trans. ASME, J. Heat Transf., 133, 011001, 10.1115/1.4002223
Lorente, 2006, Heterogeneous porous media as multiscale structures for maximum flow access, J. Appl. Phys., 100, 114909, 10.1063/1.2396842
Zimparov, 2006, Thermodynamic optimization of tree-shaped flow geometries with constant channel wall temperature, Int. J. Heat Mass Transf., 49, 4839, 10.1016/j.ijheatmasstransfer.2006.05.024
Biserni, 2007, Constructal H-shaped cavities according to Bejan's theory, Int. J. Heat Mass Transf., 50, 2132, 10.1016/j.ijheatmasstransfer.2006.11.006
Fan, 2008, Experimental investigation of the flow distribution of a 2-dimensional constructal distributor, Exp. Thermal Fluid Sci., 33, 77, 10.1016/j.expthermflusci.2008.07.003
Chen, 2008, Constructal entransy dissipation minimization for “volume-point” heat conduction, J. Phys. D. Appl. Phys., 41, 195506, 10.1088/0022-3727/41/19/195506
Chen, 2009, Constructal entransy dissipation minimization of an electromagnet, J. Appl. Phys., 105, 094906, 10.1063/1.3124451
Rocha, 2009, Tree-shaped vascular wall designs for localized intense cooling, Int. J. Heat Mass Transf., 52, 4535, 10.1016/j.ijheatmasstransfer.2009.03.003
Chen, 2010, Thermal and hydrodynamic characteristics of constructal tree-shaped minichannel heat sink, AIChE J, 56, 2018
Wang, 2011, Toward nanofluids of ultra-high thermal conductivity, Nanoscale Res. Lett., 6, 153, 10.1186/1556-276X-6-153
Chen, 2011, Constructal entransy dissipation rate minimization of a disc, Int. J. Heat Mass Transf., 54, 210, 10.1016/j.ijheatmasstransfer.2010.09.050
Azad, 2011, Economic optimization of shell and tube heat exchanger based on constructal theory, Energy, 36, 1087, 10.1016/j.energy.2010.11.041
Salimpour, 2011, Constructal optimization of the geometry of an array of micro-channels, Int. Commun. Heat Mass Transfer, 38, 93, 10.1016/j.icheatmasstransfer.2010.10.008
Bejan, 1997, Constructal-theory network of conducting paths for cooling a heat generating volume, Trans. ASME, J. Heat Transf., 40, 799, 10.1016/0017-9310(96)00175-5
Gosselin, 2005, Emergence of asymmetry in constructal tree flow networks, J. Appl. Phys., 98, 104903, 10.1063/1.2133899
da Silva, 2006, Dendritic counterflow heat exchanger experiments, Int. J. Therm. Sci., 45, 860, 10.1016/j.ijthermalsci.2005.12.006
Bejan, 2006, Networks of channels for self-healing composite materials, J. Appl. Phys., 100, 033528, 10.1063/1.2218768
Reis, 2006, Constructal theory of particle agglomeration and design of air-cleaning devices, J. Phys. D. Appl. Phys., 39, 2311, 10.1088/0022-3727/39/10/046
Zhang, 2007, Vascularization with trees that alternate with upside-down trees, J. Appl. Phys., 101, 094904, 10.1063/1.2723186
Xu, 2009, Thermal characteristics of tree-shaped microchannel nets with/without loops, Int. J. Therm. Sci., 48, 2139, 10.1016/j.ijthermalsci.2009.03.018
Cho, 2010, Vascular design of constructal structures with low flow resistance and nonuniformity, Int. J. Therm. Sci., 49, 2309, 10.1016/j.ijthermalsci.2010.07.009
Cetkin, 2010, Natural constructal emergence of vascular design with turbulent flow, J. Appl. Phys., 107, 114901, 10.1063/1.3430941
Bai, 2010, Constructal allocation of nanoparticles in nanofluids, Trans. ASME, J. Heat Transf., 132, 052404, 10.1115/1.4000473
Fan, 2010, Constructal design of nanofluids, Int. J. Heat Mass Transf., 53, 4238, 10.1016/j.ijheatmasstransfer.2010.05.050
Xie, 2010, Geometry optimization of T-shaped cavities according to constructal theory, Math. Comput. Model., 52, 1538, 10.1016/j.mcm.2010.06.017
Xiao, 2011, Constructal optimization for “disc-to-point” heat conduction without the premise of optimized last-order construct, Int. J. Therm. Sci., 50, 1031, 10.1016/j.ijthermalsci.2011.01.016
Mauroy, 2004, An optimal bronchial tree may be dangerous, Nature, 427, 633, 10.1038/nature02287
Bejan, 2000, Convective trees of fluid channels for volumetric cooling, Int. J. Heat Mass Transf., 43, 3105, 10.1016/S0017-9310(99)00353-1
Wechsatol, 2003, Dendritic convection on a disc, Int. J. Heat Mass Transf., 46, 4381, 10.1016/S0017-9310(03)00295-3
Wechsatol, 2004, Tree-shaped flow structures: are both thermal-resistance and flow-resistance minimizations necessary, Int. J. Exergy, 1, 2, 10.1504/IJEX.2004.004731
Lorenzini, 2009, A Bejan's constructal theory approach to the overall optimization of heat exchanging finned modules with air in forced convection and laminar flow condition, Trans. ASME, J. Heat Transf., 131, 081801, 10.1115/1.3109996
Lorente, 2002, Combined ‘flow and strength’ geometric optimization: internal structure in a vertical insulating wall with air cavities and prescribed strength, Int. J. Heat Mass Transf., 45, 3313, 10.1016/S0017-9310(02)00052-2
Gosselin, 2004, Combined ‘heat flow and strength’ optimization of geometry: mechanical structures most resistant to thermal attack, Int. J. Heat Mass Transf., 47, 3477, 10.1016/j.ijheatmasstransfer.2004.01.020
Gosselin, 2004, Combined ‘heat transfer and power dissipation’ optimization of nanofluid flows, Appl. Phys. Lett., 85, 4160, 10.1063/1.1813642
Gosselin, 2004, Constructal thermal optimization of an electromagnet, Int. J. Therm. Sci., 43, 331, 10.1016/j.ijthermalsci.2003.08.004
Wei, 2010, Constructal complex-objective optimization of electromagnet based on magnetic induction and maximum temperature difference, Rev. Mex. Fis., 56, 245
Wang, 2010, Vascular structures for volumetric cooling and mechanical strength, J. Appl. Phys., 107, 044901, 10.1063/1.3294697
Cetkin, 2011, Vascularization for cooling and mechanical strength, Int. J. Heat Mass Transf., 54, 2774, 10.1016/j.ijheatmasstransfer.2011.02.061
Aragón, 2011, Multi-physics design of microvascular materials for active cooling applications, J. Comput. Phys., 230, 5178, 10.1016/j.jcp.2011.03.012
Xie, 2010, Constructal optimization of a vertical insulating wall based on a complex objective combining heat flow and strength, Sci. China Technol. Sci., 53, 2278, 10.1007/s11431-010-4003-7
Chen, 2011, Multiobjective constructal optimization of an insulating wall combining heat flow, strength and weight, Int. J. Therm. Sci., 50, 1782, 10.1016/j.ijthermalsci.2011.03.022
Yu, 2006, Fractal-like tree networks reducing the thermal conductivity, Phys. Rev. E., 73, 066302, 10.1103/PhysRevE.73.066302
Bejan, 1984
Ozel, 2010, Effect of wall orientation on the optimum insulation thickness by using a dynamic method, Appl. Energy, 88, 2429, 10.1016/j.apenergy.2011.01.049
Al-Sanea, 2011, Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass, Appl. Energy, 88, 3113, 10.1016/j.apenergy.2011.02.036
Bejan, 1995
Chen, 1998, Analysis of multi-objective decision-making for marine steam turbine stage, Int. J. Power Energy Syst., 18, 96