Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2

Atmospheric Science Letters - Tập 2 - Trang 114-124 - 2001
J Luterbacher1,2, E Xoplaki2,3, D Dietrich4, P.D Jones5, T.D Davies5, D Portis6,7, J.F Gonzalez-Rouco8,9, H von Storch8, D Gyalistras2, C Casty2, H Wanner1,2
1National Competence Center of Research in Climate, University of Bern, Hallerstrasse 12, CH-3012, Bern, Switzerland
2Institute of Geography, Climatology and Meteorology, University of Bern, CH-3012, Bern, Switzerland
3Department of Meteorology and Climatology, University of Thessaloniki, GR-54006, Thessaloniki, Greece
4Institute of Mathematical Statistics, University of Bern, CH-3012, Bern, Switzerland
5Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K.
6Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma, 73019, U.S.A.
7Department of Atmospheric Sciences, University of Illinois, Urbana, Illinois, 61801, U.S.A.
8Institute of Coastal Research, GKSS Research Center, D-21502, Geesthacht, Germany
9Departamento Astrafisica y Ciencias de la Atmosfera, Universidad Complutense de Madrid, E-29040, Madrid, Spain

Tóm tắt

Abstract

Carbon cycle feedbacks have been shown to be very important in predicting climate change over the next century. The response of the terrestrial carbon cycle to climate change depends on the competition between increased respiration due to warmer temperatures and increased uptake due to elevated CO2levels. Whether the terrestrial carbon cycle remains a sink for anthropogenic carbon, or switches to become a source, depends particularly on the response of soil respiration to temperature. Here we use observed global atmospheric CO2concentration to constrain the behaviour of soil respiration in a coupled climate–carbon cycle GCM. Copyright © 2001 British Crown Copyright.


Tài liệu tham khảo

10.1038/261116a0 10.1126/science.290.5495.1342 10.1016/0168-1923(91)90002-8 10.1071/PP9920519 Cox P. M. 2001.Description of the TRIFFID dynamic global vegetation model. 10.1038/35041539 Cox P. M. Betts R. A. Jones C. D. Spall S. A.andTotterdell I. J. Modelling vegetation and the carbon cycle as interactive elements of the climate systemandPearce R. In:Meteorology at the Millenium The Royal Meteorological Society Academic Press. Cramer, W., 2001, Global response to terrestrial ecosystem structure and function to CO2and climate change: results from six dynamic global vegetation models, Global Change Biol., 7, 357, 10.1046/j.1365-2486.2001.00383.x 10.1038/35009076 10.1007/s003820050010 Hansen J. Sato M. Ruedy R. Lacis A. Asamoah K. Borenstein S. Brown E. Cairns B. Caliri G. Campbell M. Curran B. de Castro S. Druyan L. Fox M. Johnson C. Lerner J. McCormick M. Miller R. Minnis P. Morrison A. Pandolfo L. Ramberran I. Zaucker F. Robinson M. Russel P. Shah K. Stone P. Tegen I. Thomason L. Wilder J.andWilson H. 1996 A Pinatubo climate modeling investigation Fiocco G. Fua D.andVisconti G. The Mount Pinatubo Eruption 233–272 Springer‐Verlag. 10.1016/S0304-3800(00)00330-6 10.1007/s003820050155 10.1029/2000GB001281 10.1175/1520-0442(2001)014<4113:TCCRTE>2.0.CO;2 10.1038/375666a0 10.1029/1999GB900049 10.1029/92GB00219 10.1016/S0967-0637(00)00080-7 10.1034/j.1600-0889.1992.t01-1-00001.x Rayner N. Parker D. Frich P. Horton E. Folland C.andAlexander L. 2000 SST and Sea‐ice fields for ERA40 Proceedings of the Second WCRP International Conference on Reanalyses Wokefield Park nr. Reading UK WCRP 18–21. Schimel, D., 1996, Climate Change 1995. The Science of Climate Change, 65 10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2 10.1029/93GB03134