Constraints on deformation conditions and the origin of oceanic detachments: The Mid‐Atlantic Ridge core complex at 15°45′N

American Geophysical Union (AGU) - Tập 4 Số 8 - 2003
J. Escartı́n1, Catherine Mével1, C. J. MacLeod2, A. M. McCaig3
1Laboratoire de Geosciences Marines (CNRS UMR7097), Institut de Physique du Globe, 75252 Paris, France
2Cardiff School of Earth, Ocean and Planetary Sciences; Cardiff University; Cardiff CF10 3YE UK
3School of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK.#TAB#

Tóm tắt

Deformed rocks sampled from a corrugated detachment fault surface near the Mid‐Atlantic Ridge (15°45′N) constrain the conditions of deformation and strain localization. Samples recovered in situ record deformation restricted to the cold (shallow) lithosphere (greenschist facies), with no evidence for significant high‐temperature deformation either at the fault zone or in the footwall near it. High‐temperature deformation (∼720–750°C) is observed only at two sites, and cannot be directly linked to the detachment. Detachment faulting was coeval with dyke intrusions that cross cut it, as demonstrated by the presence of undeformed and highly deformed diabase found in shear zones, and by the presence of chill margins in diabase against fault rock. Basalts are very scarce and restricted to clasts in breccias, with no evidence of pillows or extrusive structures. Gabbros crop out along mass‐wasted and fault scarps structurally below the detachment. Footwall rocks show little or no deformation, due to strain localization along a narrow shear zone (<200 m) with fluid flow, as required to form talc‐ and amphibole schists after an ultramafic protolith. We speculate that the alteration front in a heterogeneous lithosphere may be a rheological boundary that may localize deformation during long periods of time. Our observations and other geological evidence elsewhere suggest that this detachment model limited to the cold (shallow) lithosphere is applicable to other corrugated surfaces along slow‐ and intermediate‐spreading ridges. These observations preclude detachment models rooting in melt‐rich zones (i.e., Atlantis Bank, Southwest Indian Ridge) or recording high‐temperature deformation. We infer that oceanic detachment faults (1) localize strain at T < 500–300°C, (2) persist during active magmatism, and (3) root at shallow rheological boundaries, such as a melt‐rich zone or magma chamber (“hot” detachments) or an alteration front (“cold” detachments).

Từ khóa


Tài liệu tham khảo

10.1016/S0016-7037(02)01173-0

10.1029/EO080i033p00367

10.1130/0091-7613(1988)016<0366:MCCROC>2.3.CO;2

10.1029/98JB01756

10.1130/0091-7613(1994)022<0319:AMODFS>2.3.CO;2

10.1029/TC007i005p00959

10.1130/0091-7613(1987)15<462:LCTETD>2.0.CO;2

10.1029/1999TC001133

10.1038/385329a0

10.1029/92JB02221

10.1007/978-94-015-8585-9_2

10.1016/0012-821X(92)90076-8

10.1016/S0040-1951(97)00113-3

Casey J. F., 1998, Megamullions along the mid‐Atlantic ridge between 14°N and 16°N: Results of Leg 1, JAMSTEC/WHOI MODE 98 Survey, Eos Trans. AGU, 79

Christie D. M., 1997, Extreme morphologic and petrologic diversity within the Southeast Indian Ridge (abstract), Eos Trans. AGU, 78

Collins J., 1998, Seismic structure of the Atlantis Fracture Zone megamullion, a serpentinized ultramafic massif, Eos Trans. AGU, 79

10.1130/0091-7613(1983)11<342:SMFTOO>2.0.CO;2

10.1130/SPE218-p133

Deplus C., 1998, Linking variation in magma supply and segment growth: Temporal evolution of segment OH‐1(MAR at 35°N), Eos Trans. AGU, 79

Detrick R. S., 1999, In situ seismic velocity structure of gabbros and ultramafics exposed at shallow crustal levels in the Mid‐Atlantic Ridge rift valley at 15°20′N (abstract), Geophys. Res. Abstr., 1, 186

10.1007/BF00373711

Dick H. J. B., 1991, Tectonic evolution of the Atlantis II Fracture Zone, Proc. Ocean Drill. Program Sci. Results, 118, 359

H. J. B. Dick J. H. Natland D. J. Miller 1999 Ocean Drilling Program College Station Tex.

10.1016/S0012-821X(00)00102-3

Dick H. J. B. T.Matsumoto B.John H.Kinoshita P.Robinson G.Hirth J.Natland andC. J.MacLeod The Atlantis Bank Core complex paper presented atInterRidge SWIR Workshop Southampton U.K. 2002.

10.1016/0012-821X(91)90061-L

10.1016/0012-821X(93)90256-9

10.2138/am-1998-9-1004

10.1016/S0012-821X(97)81847-X

10.1029/96JB02792

10.1016/S0012-821X(99)00169-7

10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2

10.1130/0016-7606(1995)107<1468:LMCEAE>2.3.CO;2

Fujiwara T., 1999, Bathymetry, geomagnetic and gravity anomalies of the Mid‐Atlantic Ridge between 14°N and 16°N, Eos Trans. AGU, 80

10.1029/2002GC000364

10.1130/0091-7613(1997)025<0615:EORBAL>2.3.CO;2

10.1007/BF00310910

10.1016/0191-8141(89)90033-3

10.1016/0040-1951(95)00163-8

John B., 1987, Continental Extensional Tectonics, 313

10.1098/rsta.1999.0350

10.1038/35084000

10.1029/GM106p0153

10.1130/0091-7613(1999)027<1127:SCRHMF>2.3.CO;2

10.1130/0091-7613(1992)020<0121:LMDEAD>2.3.CO;2

10.1029/1999GC000026

10.1130/0091-7613(1993)021<0607:PATOOM>2.3.CO;2

10.1130/0091-7613(1984)12<221:MCCOCT>2.0.CO;2

MacLeod C. J., 1998, Geological mapping of slow‐spread lower ocean crust: A deep‐towed video and wireline rock drilling survey of Atlantis Bank (ODP Site 735, southwest Indian Ridge), InterRidge News, 7, 39

C. J. MacLeod 2001 Cardiff Univ. Wales

MacLeod C. J., 2002, Direct geological evidence for oceanic detachment fauling: The Mid‐Atlantic Ridge, 15°45′N, Geology, 30, 10, 10.1130/0091-7613(2002)030<0879:DGEFOD>2.0.CO;2

Martinez F., 1998, Recent kinematics and tectonics of the Chile Ridge, Eos Trans. AGU, 79

Matsumoto T., 1998, Precise geological and geophysical mapping of the 15°20′N Fracture Zone on the MAR ‐ Tectonic extension and its consequent exposure of ultramafic and plutonic rocks along the magma‐poor ridge axis (MODE'98 Leg 1 Cruise), InterRidge News, 7, 13

10.1016/0040-1951(91)90353-T

10.1029/TC002i003p00239

10.1029/98EO00095

A. Miyashiro 1973 John Wiley New York

10.1029/97JB00995

10.1029/92TC01967

10.1130/0091-7613(2001)029<0895:MHSDEO>2.0.CO;2

10.1016/S0377-0273(01)00211-6

10.1130/0091-7613(1992)020<0705:STTVPI>2.3.CO;2

D. S. O'Hanley 1996 Oxford Univ. Press New York

10.1130/0091-7613(1993)021<0247:DMILAN>2.3.CO;2

C. W. Passchier R. A. J. Trouw 1998 Springer‐Verlag New York

10.1130/0091-7613(1999)027<0983:DFAOCC>2.3.CO;2

10.1029/91GL02367

10.1016/S0012-821X(02)00636-2

P. T. Robinson 1989 Ocean Drilling Program College Station Tex.

10.1130/0091-7613(2002)030<0367:GIOSCT>2.0.CO;2

Searle R. C., 1999, FUJI Dome, a large detachment fault near 64 degrees E on the very slow spreading South West Indian Ridge (abstract), EOS Trans. AGU, 80

10.1038/358490a0

10.1126/science.277.5334.1956

10.1130/0091-7613(1984)12<95:ROTDIW>2.0.CO;2

10.1130/0091-7613(1999)027<0327:GCCBCA>2.3.CO;2

Tamaki K., 1998, Spreading tectonics of the eastern part of the Southwestern Indian Ridge: A synthesis of FUJI expedition (abstract), Eos Trans. AGU, 79, F892

10.1029/98JB00167

10.1029/96JB03896

10.1029/2001JB000373

10.1038/291645a0

B. Wernicke M. Salisbury D. M. Fountain 1990 Kluwer Norwell Mass. 509 544

10.1130/0091-7613(1988)016<0848:OTROII>2.3.CO;2

10.1029/90EO00319

Wright L. A., 1974, Guidebook, Death Valley Region, California and Nevada, 27