Constraint-Based Evaluation of Map Images Generalized by Deep Learning

Azelle Courtial1, Guillaume Touya1, Xianbin Zhang2
1LASTIG, University Gustave Eiffel, ENSG, IGN, F-94160, Saint-Mande, France
2School of Geospatial Engineering and Sciences, Sun Yat-Sen University, Guangzhou, 510275, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bard, S (2004) Quality assessment of cartographic generalisation. Transactions in GIS 8(1):63–81 ISSN: 1467-9671. https://doi.org/10.1111/j.1467-9671.2004.00168.x

Beard KM (1991) Constraints on rule formation. In: Buttenfield Barbara, McMaster Robert (eds) Map generalization. Longman Pages, pp 121–135

Bravo MJ, Farid H, (2008) A scale invariant measure of clutter. J Vision 8(1):23. https://jov.arvojournals.org/article.aspx?articleid=2122173. Publisher: The Association for Research in Vision and Ophthalmology

Burghardt D, Schmid S, Stoter JE (2007) Investigations on cartographic constraint formalisation. In: ICC 2007 : proceedings of the workshop of the ICA commission on generalization and multiple representation, August 2-3 at the 23nd international cartographic conference ICC: Cartography for everyone and for you, 4-10 August 2007. ICC, Moscow, Russia, p 16

Courtial A, El Ayedi A, Touya G, Zhang X (2020a) Exploring the potential of deep learning segmentation for mountain roads generalisation. ISPRS Int J Geo-Inf 9(5):338. https://doi.org/10.3390/ijgi9050338. Number: 5 Publisher: Multidisciplinary Digital Publishing Institute

Courtial A, Touya G, Zhang X (2020b) Constraint based evaluation of generalized images generated by deep learning. In: 23rd ICA workshop on map generalisation and multiple representation. Delft, Netherlands, ICA. https://hal.archives-ouvertes.fr/hal-02995412

Courtial A, Touya G, Zhang X (2021a) Generative adversarial networks to generalise urban area in topographic maps. In: The international archives of the photogrammetry, remote sensing and spatial information sciences, vol XLIII-B4-2021. Copernicus GmbH, pp 15–22. ISSN: 1682-1750. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-15-2021

Courtial A, Touya G, Zhang X (2021b) Can graph convolution networks learn spatial relations? Abstracts of the ICA 3:1–2. https://doi.org/10.5194/ica-abs-3-60-2021

Courtial A, Touya G, Zhang X (2022) AlpineBends – A Benchmark for Deep Learning-Based Generalisation. Abstracts of the ICA 4:1–2. https://doi.org/10.5194/ica-abs-4-1-2022

Du J, Wu F, Xing R, Gong X, Yu L (2021) Segmentation and sampling method for complex polyline generalization based on a generative adversarial network. Geocarto Int 0(0):1–23. ISSN 1010-6049. https://doi.org/10.1080/10106049.2021.1878288. Publisher: Taylor & Francis

Duchêne C (2014) Individual road generalisation in the 1997–2000 AGENT European project. Technical report, IGN, COGIT lab, Saint-Mandé, France

Dumont M, Touya G, Duchêne C (2016) Assessing the variation of visual complexity in multi-scale maps with clutter measures. ICA Workshop on Generalisation and Multiple Representation

Feng Y, Thiemann F, Sester M (2019) Learning cartographic building generalization with deep convolutional neural networks. International Journal of Geo-Information

Fu H, Gong M, Wang C, Batmanghelich K, Zhang K, Tao D (2019) Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping. In: 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR). IEEE, Long Beach, CA, USA. pp 2422–2431. ISBN 978-1-72813-293-8 https://doi.org/10.1109/CVPR.2019.00253

Galanda M (2003) Modelling constraints for polygon generalisation. In: Proceedings of 5th workshop on progress in automated map generalisation. ICA, event-place: Paris, France

Isola P, Zhu JY, Zhou T, Efros AA (2016) Image-to-image translation with conditional adversarial networks. arXiv:1611.07004

Kang Y, Gao S, Roth R (2019) Transferring multiscale map style using generative adversarial network

Mackaness WA, Edwards G (2002) The importance of modelling pattern and structure in automated map generalisation. In: Proceedings of the Joint ISPRS/ICA workshop on multi-scale representations of spatial data. pp 7–8

Mackaness WA, Ruas A (2007) Chapter $$5$$ - evaluation in the map generalisation process. In: Mackaness WA, Ruas A, Sarjakoski LT (eds) Generalisation of geographic information, International Cartographic Association. Elsevier Science B.V, Amsterdam, pp 89–111. ISBN 978-0-08-045374-3. https://doi.org/10.1016/B978-008045374-3/50007-7

Mustière S (1998) GALBE: Adaptive generalisation - the need for an adaptive process for automated generalisation, an example on roads. In: 1st GIS’PlaNet conference, Lisbon, Portugal

Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. pp 234–241. arXiv:1505.04597

Rosenholtz R, Li Y, Nakano L (2007) Measuring visual clutter. Journal of Vision 7:17.1-22. https://doi.org/10.1167/7.2.17

Ruas, A (1999) Modèle de généralisation de données géographiques à base de contraintes et d’autonomie. phdthesis, Université de Marne la Vallée

Sharma G, Wu W, Dalal EN (2005) The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res Appl 30(1):21–30 ISSN 0361-2317, 1520-6378. https://doi.org/10.1002/col.20070

Skopeliti A, Tsoulos L (2001) A methodology for the assessment of generalization quality. In: Fourth workshop on progress in automated map generalization. pp 2–4

Stoter J, Burghardt D, Duchêe C, Baella B, Bakker N, Blok C, Pla M, Regnauld N, Touya G, Schmid S (2009) Methodology for evaluating automated map generalization in commercial software. Comput Environ Urban Syst 33(5): 311–324. ISSN 0198-9715. https://doi.org/10.1016/j.compenvurbsys.2009.06.002

Stoter J, Zhang X, Stigmar H, Harrie L (2014) Evaluation in generalisation. In: Burghardt D, Duchêne C, Mackaness W (eds) Abstracting geographic information in a data rich World, Lecture Notes in Geoinformation and Cartography.Springer International Publishing, pp 259–297. https://doi.org/10.1007/978-3-319-00203-3_9

Touya G, Duchêne C, Ruas A (2010) Collaborative generalisation: formalisation of generalisation knowledge to orchestrate different cartographic generalisation processes. In: Fabrikant SI, Reichenbacher T, van Kreveld M, Schlieder C (eds) Geographic information science. lecture notes in computer science. Springer, Berlin, Heidelberg, pp 264–278. ISBN 978-3-642-15300-6 https://doi.org/10.1007/978-3-642-15300-6_19

Touya G (2012) Social welfare to assess the global legibility of a generalized map. Geographic Information Science

Touya G, Decherf B, Lalanne M, Dumont M (2015) Comparing image-based methods for assessing visual clutter in generalized maps. ISPRS Annals of Photogrammetry, Remote Sensing andSpatialInformationSciences, II-3/W5. https://doi.org/10.5194/isprsannals-II-3-W5-227-2015

Touya G, Zhang X, Lokhat, (2019) Is deep learning the new agent for map generalization? Int J Cartogr 5(2–3):142–157. ISSN 2372–9333. https://doi.org/10.1080/23729333.2019.1613071. Publisher: Taylor & Francis

Touya G, Lokhat I (2020) Deep learning for enrichment of vector spatial databases: Application to highway interchange. ACM Trans Spatial Algorithms Syst 6(3).ISSN 2374-0353. https://doi.org/10.1145/3382080

Werder S (2009) Formalization of spatial constraints. In: 12th AGILE international conference on geographic information science. p 13

Yan X, Ai T, Yang M, Tong X (2020) Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps. Int J Geogr Inf Sci 0 (0): 1–23. ISSN 1365-8816. Publisher: Taylor & Francis. https://doi.org/10.1080/13658816.2020.1768260

Zhang X (2012) Automated evaluation of generalized topographic maps. PhD thesis, University of Twente

Zhang X, Stoter J, Ai T, Kraak M-J, Molenaar Ma (2013) Automated evaluation of building alignments in generalized maps. Int J Geogr Inf Sci 27 (8): 1550–1571. ISSN 1365-8816. Publisher: Taylor & Francis. https://doi.org/10.1080/13658816.2012.758264

Zhu J-Y, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, Venice, pp 2242–2251. ISBN 978-1-5386-1032-9. https://doi.org/10.1109/ICCV.2017.244