Constraining the relative importance of raindrop‐ and flow‐driven sediment transport mechanisms in postwildfire environments and implications for recovery time scales

Journal of Geophysical Research F: Earth Surface - Tập 121 Số 11 - Trang 2211-2237 - 2016
Luke A. McGuire1,2, Jason W. Kean2, Dennis M. Staley2, Francis K. Rengers2, Thad Wasklewicz3
1Department of Geosciences, University of Arizona, Tucson, Arizona, USA
2U.S. Geological Survey, Denver, Colorado , USA
3Department of Geography, East Carolina University, Greenville, North Carolina USA

Tóm tắt

AbstractMountain watersheds recently burned by wildfire often experience greater amounts of runoff and increased rates of sediment transport relative to similar unburned areas. Given the sedimentation and debris flow threats caused by increases in erosion, more work is needed to better understand the physical mechanisms responsible for the observed increase in sediment transport in burned environments and the time scale over which a heightened geomorphic response can be expected. In this study, we quantified the relative importance of different hillslope erosion mechanisms during two postwildfire rainstorms at a drainage basin in Southern California by combining terrestrial laser scanner‐derived maps of topographic change, field measurements, and numerical modeling of overland flow and sediment transport. Numerous debris flows were initiated by runoff at our study area during a long‐duration storm of relatively modest intensity. Despite the presence of a well‐developed rill network, numerical model results suggest that the majority of eroded hillslope sediment during this long‐duration rainstorm was transported by raindrop‐induced sediment transport processes, highlighting the importance of raindrop‐driven processes in supplying channels with potential debris flow material. We also used the numerical model to explore relationships between postwildfire storm characteristics, vegetation cover, soil infiltration capacity, and the total volume of eroded sediment from a synthetic hillslope for different end‐member erosion regimes. This study adds to our understanding of sediment transport in steep, postwildfire landscapes and shows how data from field monitoring can be combined with numerical modeling of sediment transport to isolate the processes leading to increased erosion in burned areas.

Từ khóa


Tài liệu tham khảo

10.1071/WF05042

10.1016/S0169-555X(00)00108-2

10.1002/hyp.388

10.1061/(ASCE)0733-9429(1999)125:12(1270)

10.1061/(ASCE)0733-9429(2004)130:7(689)

10.1071/WF05044

Corbet E. andR.Crouse(1968) Rainfall interception by annual grass and chaparral US Forest Service Research Paper PSW‐48 12 pp. Pacific Southwest Forest and Range Experiment Station Berkeley Calif.

Costa J. E., 1988, Rheologic, Geomorphic, and Sedimentologic Differentiation of Water Floods, Hyperconcentrated Flows, and Debris Flows, Flood Geomorphology, 113

10.1016/S0022-1694(00)00194-3

Debano L. F., 1966, Water repellent soils and their relation to wildfire temperatures, Hydrol. Sci. J., 11, 14

Delong S. B. W.Henderson andA.Youberg(2012) Post wildfire landscape change in a small headwater catchment from terrestrial LiDAR paper presented at Southwest Wildfire Hydrology and Hazards Workshop: Conference Proceedings Oracle Ariz. 3rd–5th April.

10.1029/2000JB900330

10.1029/2009JF001302

Dyrness C., 1976, Effect of Wildfire on Soil Wettability in the High Cascades of Oregon

10.1016/S0022-1694(00)00155-4

10.1029/2011WR010850

Flanagan D. andM.Nearing(1995) USDA‐Water Erosion Prediction Project: Hillslope profile and watershed model documentation NSERL Report No. 10 USDA‐ARS National Soil Erosion Research Laboratory West Lafayette Indiana.

10.1029/2001WR000656

10.1098/rspa.2013.0820

10.1097/00010694-198703000-00009

10.1016/0169-555X(88)90006-2

10.1017/S0021859600001441

10.2136/sssaj1991.03615995005500020003x

10.1029/91WR02380

10.1029/91WR02381

10.1029/2008WR007502

10.1029/2010WR009375

10.1002/hyp.379

10.1016/S0169-555X(97)00098-6

10.1029/2004WR003218

10.1029/97RG00426

10.1029/2000JB900329

10.1061/(ASCE)0733-9429(2005)131:9(755)

10.1016/j.jhydrol.2010.10.021

10.1029/2011JF002005

10.1029/2012WR012047

10.1002/wrcr.20373

10.1002/hyp.5788

10.1002/hyp.9363

10.1029/2010JF001878

10.2136/sssaj2007.0432

10.1002/(SICI)1096-9837(199704)22:4<365::AID-ESP693>3.0.CO;2-6

10.1002/2014WR015690

10.1017/S0962492911000043

10.1016/j.compfluid.2008.02.008

10.1016/j.catena.2006.10.006

McCarthy C.(1980) Sediment transport by rain splash PhD thesis Univ. of Washington Seattle.

10.1002/jgrf.20028

Meyer G. A., 1997, Fire‐related sedimentation events on alluvial fans, Yellowstone National Park, USA, J. Sediment. Res., 67, 776

Moody J. andD.Martin(2001a) Hydrologic and sedimentologic response of two burned watersheds in Colorado Tech. Rep. 1‐4122 U.S. Geol. Surv. Water Res. Invest. Denver Colo.

10.1002/esp.253

10.1071/WF07162

10.1029/2004JF000141

10.1016/j.earscirev.2013.03.004

10.1016/j.jhydrol.2011.02.032

10.1126/science.169.3952.1311

10.1029/WR019i005p01323

10.1177/0309133313508802

10.1016/j.geomorph.2015.01.006

10.1002/2015JF003663

10.1002/esp.3570

10.1002/hyp.6904

Pietraszek J.(2006) Controls on post‐fire erosion at the hillslope scale Colorado Front Range PhD thesis Colorado State Univ. Fort Collins.

10.1130/G34927.1

10.2136/sssaj1991.03615995005500020004x

10.1002/(SICI)1099-1085(199802)12:2<251::AID-HYP574>3.0.CO;2-4

Rawls W. J., 1992, Handbook of Hydrology

10.1002/2015JF003600

10.1002/2015WR018176

Richardson J., 1954, Fluidization and sedimentation—Part I, Trans. Inst. Chem. Eng, 32, 38

10.1023/A:1008064220727

10.1016/j.catena.2007.03.003

10.1029/2009WR008314

10.1016/j.geomorph.2013.04.024

10.1016/j.catena.2016.01.027

10.1130/G21260.1

10.1016/0002-1571(71)90034-3

10.2307/2401739

10.1029/2000WR900024

10.1016/0022-1694(95)02810-2

10.1029/2001WR000323

Schmidt K., 2011, 5th International Conference on Debris Flow Hazards Mitigation/Mechanics, Prediction, and Assesment, Padua Italy, 583

10.1016/j.earscirev.2005.10.006

10.1071/WF9930095

Shuttleworth W.(1979) Evaporation Tech. Rep. 56 Institute of Hydrology NERC Wallingford England.

10.1016/j.cageo.2006.02.020

10.1016/j.geomorph.2014.02.015

Struiksma N., 1999, Proceedings IAHR Symposium River Coastal and Estuarine Morphodynamics (RCEM), 89

Swanson F. J.(1981) Fire and geomorphic processes. Fire regimes and ecosystem properties: Proceedings of the conference General Tech. Rep. WO‐GTR‐26 pp. 401‐420 US Department of Agriculture Forest Service Washington D. C.

10.1002/esp.3290180605

Toro E. F., 2001, Shock‐Capturing Methods for Free‐Surface Shallow Flows

10.1007/b79761

10.1007/BF01414629

10.1029/2007WR006361

10.1016/S0022-1694(02)00020-3

10.1139/t85-006

10.1002/hyp.6146

10.1029/2009WR008315

10.1130/REG7-p105

10.1016/j.geomorph.2013.10.011

White W., 1979, Adjustment of the Fluvial System: Proceedings Volume of the Tenth Annual Geomorphology Symposium, Binghampton, New York, U.S.A., 199

Zheng T.(2011) Mathematical modeling of soil erosion by rainfall and shallow overland flow PhD thesis Loughborough University Loughborough England.