Constraining the <i>P</i>–<i>T</i> path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif

Journal of Metamorphic Geology - Tập 23 Số 8 - Trang 725-743 - 2005
Pavla Štípská1,2, R. Powell3
1Centre de Géochimie de Surface, UMR CNRS 7517, 1 Rue Blessig, Strasbourg, France
2Institute of Petrology and Structural Geology, Charles University, Albertov 6, 12843, Prague, Czech Republic ([email protected]‐strasbg.fr)
3School of Earth Sciences, University of Melbourne, Melbourne, Victoria, 3010, Australia

Tóm tắt

AbstractA mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.

Từ khóa


Tài liệu tham khảo

10.1111/j.1525-1314.1997.00686.x

10.1046/j.1525-1314.1999.00177.x

Carswell D. A., 1990, Eclogite and the eclogite facies: definitions and classification, Eclogite Facies Rocks, 1

10.1007/s005310000123

10.1016/S0024-4937(01)00049-4

10.1127/0935-1221/01/0013-0067

10.1111/j.1525-1314.2005.00609.x

10.1046/j.1525-1314.1999.00215.x

Dudek A., 1974, Eclogites of the Bohemian Moldanubicum, Neues Jahrbuch Für Mineralogie-Abhandlungen, 121, 127

10.1016/S0024-4937(00)00014-1

10.1007/BF01178028

10.1130/SPE230-p67

Franke W., 2000, Orogenic Processes: Quantification and Modelling in the Variscan Belt, Special Publications, 179, 35

10.1046/j.1525-1314.1996.06016.x

10.1046/j.0263-4929.2001.00320.x

Hacker B. R., 2003, Subduction factory – 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents, Journal of Geophysical Research–Solid Earth, 108, 1, 10.1029/2001JB001127

10.2138/am-1996-11-1215

10.1111/j.1525-1314.1998.00140.x

10.1007/s00410-003-0464-z

10.1016/0024-4937(82)90021-4

10.1111/j.1525-1314.1994.tb00008.x

10.1046/j.1525-1314.2000.00247.x

10.1111/j.1525-1314.2004.00534.x

10.1007/s004100050013

10.1046/j.0263-4929.2001.00346.x

10.1016/0040-1951(90)90279-H

10.1127/ejm/7/1/0007

10.1111/j.1525-1314.1998.00158.x

10.1127/ejm/2/1/0125

10.1111/j.1525-1314.1998.00160.x

10.1046/j.1525-1314.1999.00184.x

10.1016/S0024-4937(97)82008-7

O'Brien P. J., 1997, Precambrian Geology and Metamorphic Petrology, Proceedings 30th International Geological Congress, 17, part II, 157

10.1046/j.1525-1314.2003.00420.x

10.1007/s005310050019

10.1046/j.1525-1314.2003.00479.x

10.1046/j.1525-1314.2003.00415.x

10.1093/petrology/17.1.15

10.1111/j.1525-1314.1998.00157.x

10.1007/s00410-004-0554-6

10.1007/s00710-005-0111-7

10.1029/95JB00913

10.1016/S0024-4937(03)00107-5

10.2475/ajs.302.10.856

Schulmann K., 2005, Geodynamics of eastern margin of the Variscan thickened orogenic root, model based on structural, petrological and new geochronological data, American Journal of Science

10.1046/j.1525-1314.2003.00416.x

10.2138/am-1999-1-208

Štípská P., 2005, Does ternary feldspar constrain the metamorphic conditions of high‐grade meta‐igneous rocks? Evidence from orthopyroxene gneisses, Bohemian Massif, Journal of Metamorphic Geology, 23, 000, 10.1111/j.1525-1314.2005.00600.x

10.1111/j.1525-1314.2004.00508.x

10.1016/S0040-1951(00)00252-3

Tollmann A., 1982, Großräumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas, Geotektonische Forschungen, 64, 1

10.1046/j.1525-1314.2003.00435.x

10.1046/j.0263-4929.2000.00303.x

10.1016/S0024-4937(01)00059-7

10.1007/s004100050406

10.1016/j.lithos.2004.03.002

10.1007/BF00320972

10.1111/j.1525-1314.2004.00540.x