Constrained model predictive control: Stability and optimality
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alamir, 1995, Stability of a truncated infinite constrained receding horizon scheme, Automatica, 31, 1353, 10.1016/0005-1098(95)00042-U
Allgöwer, F., & Zheng, A. (1999). Model predictive control: Assessment and future directions. Proceedings of international workshop on model predictive control, Ascona, 1998, Berlin: Springer.
Allwright, J. C., (1993). On min-max model-based predictive control. Proceedings Oxford symposium on advances in model based predictive control, Oxford (pp. 4153–426).
Åström, K. J. (1970). Introduction to stochastic control theory, New York, USA: Academic Press.
Badgwell, 1997, Robust model predictive control of stable linear systems, International Journal of Control, 68, 797, 10.1080/002071797223343
Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.
Bemporad, 1998, A predictive controller with artificial Lyapunov function for linear systems with input/state constraints, Automatica, 34, 1255, 10.1016/S0005-1098(98)00066-1
Bemporad, 1998, Reference governor for constrained nonlinear systems, IEEE Transactions on Automatic Control, 43, 415, 10.1109/9.661611
Bemporad, 1997, Nonlinear control of constrained linear systems via predictive reference management, IEEE Transactions on Automatic Control, 42, 340, 10.1109/9.557577
Bemporad, 1995, On the stabilizing property of SIORHC, Automatica, 30, 2013, 10.1016/0005-1098(94)90064-7
Bemporad, A., & Morari, M. (1998). Predictive control of constrained hybrid systems. Preprints of international symposium on nonlinear model predictive control: Assessment and future directions, Monte Verità, Ascona, Switzerland (pp. 108–127).
Bemporad, 1999, Control of systems integrating logic, dynamics, and constraints, Automatica, 35, 407, 10.1016/S0005-1098(98)00178-2
Bemporad, 1998, Fulfilling hard constraints in uncertain linear systems by reference managing, Automatica, 34, 451, 10.1016/S0005-1098(97)00213-6
Biegler, 1998, Advances in nonlinear programming concepts for process control, Journal of Process Control, 8, 301, 10.1016/S0959-1524(98)00009-2
Bitmead, R. R., Gevers, M., & Wertz, V. (1990). Adaptive optimal control — The thinking man’s GPC. Englewood Cliffs, NJ: Prentice-Hall.
Camacho, E., & Bordons, C. (1998). Model predictive control. Berlin: Springer.
Chen, H., & Allgöwer, F. (1998a). Nonlinear model predictive control schemes with guaranteed stability. In: R. Berber, C. Kravaris (Eds.), NATO ASI on nonlinear model based process control (pp. 465–494). Dordrecht: Kluwer.
Chen, 1998, A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica, 14, 1205, 10.1016/S0005-1098(98)00073-9
Chen, H., Scherer, C., & Allgöwer, F. (1997). A game theoretic approach to nonlinear robust receding horizon control of constrained systems. Proceedings of the American control conference, Albuquerque, NM.
Chisci, 1996, Dual receding horizon control of constrained discrete-time systems, European Journal of Control, 2, 278, 10.1016/S0947-3580(96)70052-3
Chisci, 1994, Stabilizing I-O receding horizon control of CARMA plants, IEEE Transactions on Automatic Control, 39, 614, 10.1109/9.280772
Chmielewski, 1996, On constrained infinite-time linear quadratic optimal control, Systems & Control Letters, 29, 121, 10.1016/S0167-6911(96)00057-6
Clarke, D. W. (1994). Advances in model predictive control. Oxford, UK: Oxford Science Publications.
Clarke, 1987, Generalized predictive control. Part 1: The basic algorithms, Automatica, 23, 137, 10.1016/0005-1098(87)90087-2
Clarke, 1987, Generalized predictive control. Part 2: Extensions and interpretations, Automatica, 23, 149, 10.1016/0005-1098(87)90088-4
Clarke, 1991, Constrained receding horizon predictive control, Proceedings of the IEE, Part D, Control theory and applications, 138, 347, 10.1049/ip-d.1991.0047
Cutler, C. R., & Ramaker, B. L. (1980). Dynamic matrix control — a computer control algorithm. Proceedings Joint Automatic Control Conference, San Francisco, CA.
De Keyser, R. M., & Van Cauwenberghe, A. R. (1979). A self-tuning predictor as operator guide. Proceedings of the fifth IFAC symposium on identification and system parameter estimation (pp. 1249–1256). Oxford: Pergamon.
De Nicolao, G., Magnani, L., Magni, L., & Scattolini, R. (1999a). On stabilizing receding horizon control for nonlinear discrete time systems. Proceedings of 38th IEEE conference on decision and control.
De Nicolao, 1996, On the robustness of receding horizon control with terminal constraints, IEEE Transactions on Automatic Control, 41, 451, 10.1109/9.486649
De Nicolao, 1996, Robust predictive control of systems with uncertain impulse response, Automatica, 32, 1475, 10.1016/0005-1098(96)00082-9
De Nicolao, G., Magni, L., & Scattolini, R. (1996c). Stabilizing nonlinear receding horizon control via a nonquadratic penalty. Proceedings of the IMACS multiconference CESA, vol. 1, Lille, France (pp. 185–187).
De Nicolao, G., Magni, L., & Scattolini, R. (1998). Stability and robustness of nonlinear receding horizon control. International symposium on nonlinear model predictive control: Assessment and future directions, Ascona.
De Nicolao, G., Magni, L., & Scattolini, R. (1999b). Robustness of receding horizon control for nonlinear discrete-time systems. Robustness in identification and control. Berlin: Springer, to appear.
De Nicolao, G., & Sepulchre, R. (1997). Fake Riccati equations for stable receding-horizon control. Proceedings of ECC conference.
De Oliveira, 1994, Constraint handling and stability properties of model-predictive control, A.I.Ch.E. Journal, 40, 1138, 10.1002/aic.690400706
De Oliveira, S. L., Nevistic, V., & Morari, M. (1995). Control of nonlinear systems subject to input constraints. IFAC symposium on nonlinear control system design, Tahoe City, CA (pp. 15–20).
Fleming, W. H., & Rishel, R. W. (1975). Deterministic and stochastic optimal control. New York: Springer.
Gallestey, E., & James, M. R. (1999). H∞ control of nonlinear systems using receding horizon controllers, in preparation.
Garcı́a, 1986, Quadratic programming solution of dynamic matrix control (QDMC), Chemical Engineering Communications, 46, 73, 10.1080/00986448608911397
Gauthier, 1983, Commande multivariable en présence de constraintes de type inégalité, Revue d'Automatique d'Informatique et de Recherche Opérationnelle (RAIRO), 17, 205
Genceli, 1993, Robust stability analysis of constrained l1 norm model predictive control, A.I.Ch.E. Journal, 39, 1954, 10.1002/aic.690391206
Gilbert, E. C., Kolmanovsky, I., & Tan, K. T. (1994). Nonlinear control of discrete-time linear systems with state and control constraints: A reference governor with global convergence properties. Proceedings of the 33rd IEEE conference on decision and control. Lake Buena Vista, FL (pp. 144–149).
Gilbert, 1991, Linear systems with state and control constraints, IEEE Transactions on Automatic Control, AC-36, 1008, 10.1109/9.83532
Jadbabaie, A., Yu, J., & Hauser, J. (1999). Unconstrained receding horizon control of nonlinear systems. IEEE Transactions on Automatic Control, submitted.
Kalman, 1960, Contributions to the theory of optimal control, Boletin Sociedad Matematica Mexicana, 5, 102
Kantor, J. C., Garcı́a, C. E., & Carnahan, B. (1997). (Eds.), Fifth international conference on chemical process control, CACHE, A.I.Ch.E.
Keerthi, S. S. (1986). Optimal feedback control of discrete-time systems with state-control constraints and general cost functions. Ph.D. thesis, University of Michigan.
Keerthi, 1988, Optimal, infinite horizon feedback laws for a general class of constrained discrete time systems, Journal of Optimization Theory and Application, 57, 265, 10.1007/BF00938540
Kleinman, 1970, An easy way to stabilize a linear constant system, IEEE Transactions on Automatic Control, 15, 693
Kothare, 1996, Robust constrained model predictive control using linear matrix inequalities, Automatica, 32, 1361, 10.1016/0005-1098(96)00063-5
Kurtz, 1997, Input–output linearizing control of constrained nonlinear processes, Journal of Process Control, 7, 3, 10.1016/S0959-1524(96)00006-6
Kwon, 1983, Stabilizing state-feedback design via the moving horizon method, International Journal of Control, 37, 631, 10.1080/00207178308932998
Kwon, 1977, A modified quadratic cost problem and feedback stabilization of a linear system, IEEE Transactions on Automatic Control, 22, 838, 10.1109/TAC.1977.1101619
Lall, S., & Glover, K. (1994). A game theoretic approach to moving horizon control. In: D. W. Clarke, Advances in model-based predictive control (pp. 131–1441). Oxford: Oxford University Press.
Lee, E. B., & Markus, L. (1967). Foundations of optimal control theory. New York: Wiley.
Lee, J. H., & Cooley, B. (1997). Recent advances in model predictive control and other related areas. In: J. C. Kantor, C.E. Garcı́a, & B. Carnahan (Eds.), Fifth international conference on chemical process control, CACHE, AIChE (pp. 201–216).
Lee, 1994, State-space interpretation of model predictive control, Automatica, 30, 707, 10.1016/0005-1098(94)90159-7
Lee, 1997, Worst-case formulations of model predictive control for systems with bounded parameters, Automatica, 33, 763, 10.1016/S0005-1098(96)00255-5
Magni, L., De Nicolao, G., & Scattolini, R. (1998). Output feedback receding-horizon control of discrete-time nonlinear systems. Proceedings of the IFAC nonlinear control systems design symposium, Enschede, The Netherlands.
Magni, M., De Nicolao, G., Scattolini, R., & Allgöwer, F. (1999a). H∞ receding horizon control for non-linear discrete-time systems. Systems & Control Letters, submitted.
Magni, L., Nijmeijer, H., & van der Schaft, A. (1999b). A receding horizon approach to the nonlinear H∞ problem. Automatica, submitted.
Magni, 1997, Stability margins of nonlinear receding-horizon control via inverse optimality, Systems & Control Letters, 32, 241, 10.1016/S0167-6911(97)00079-0
Marquis, P., & Broustail, J. P. (1988). SMOC, a bridge between state space and model predictive controllers: application to the automation of a hydrotreating unit. In: T. J. McAvoy, Y. Arkun, & E. Zafiriou (Eds.), Proceedings of the IFAC workshop on model based process control (pp. 37–43). Oxford: Pergamon Press.
Mayne, D. Q. (1995). Optimization in model based control, Proceedings of the IFAC symposium on dynamics and control chemical reactors and batch processes (Dycord+’95), Helsingor, Denmark (pp. 229–242). Oxford: Elsevier Science. Plenary address.
Mayne, D. Q. (1997). Nonlinear model predictive control: An assessment. In: J. C. Kantor, C. E. Garcı́a, & B. Carnahan (Eds.), Fifth International Conference on Chemical Process Control, CACHE, A.I.Ch.E. (pp. 217–231).
Mayne, 1990, Receding horizon control of non-linear systems, IEEE Transactions on Automatic Control, 35, 814, 10.1109/9.57020
Meadows, E. S. (1997). Dynamic programming and model predictive control. Proceedings of American Control Conference, Albuquerque (pp. 1635–1639).
Meadows, 1998, Feedback through steady-state target optimization for nonlinear model predictive control, Journal of Vibration and Control, 4, 61, 10.1177/107754639800400105
Meadows, 1995, Receding horizon control and discontinuous state feedback stabilization, International Journal of Control, 62, 1217, 10.1080/00207179508921593
Michalska, 1997, A new formulation of receding horizon control without a terminal constraint on the state, European Journal of Control, 3, 2, 10.1016/S0947-3580(97)70058-X
Michalska, 1993, Robust receding horizon control of constrained nonlinear systems, IEEE Transactions on Automatic Control, 38, 1623, 10.1109/9.262032
Michalska, 1995, Moving horizon observers and observer-based control, IEEE Transactions on Automatic Control, 40, 995, 10.1109/9.388677
Morari, M., Bemporad, A., & Mignone, D. (1999). A framework for control, state estimation and verification of hybrid systems. Automatisierungstechnik, to appear.
Morari, M., & De Oliveira, S. L. (1998). Contractive model predictive control for constrained nonlinear systems. IEEE Transactions on Automatic Control, in press.
Morari, 1999, Model predictive control: Past, present and future, Computers and Chemical Engineering, 23, 667, 10.1016/S0098-1354(98)00301-9
Mosca, E. (1994). Optimal, predictive and adaptive control, Information and system science Series. Englewoods Cliffs, NJ: Prentice Hall.
Mosca, E., Lemos, J. M., & Zhang, J. (1990). Stabilizing I/O receding horizon control. Proceedings 29th IEEE conference on decision and control, Honolulu (pp. 2518–2523).
Mosca, 1992, Stable redesign of predictive control, Automatica, 28, 1229, 10.1016/0005-1098(92)90065-N
Muske, 1993, Model predictive control with linear models, A.I.Ch.E. Journal, 39, 262, 10.1002/aic.690390208
Nevistić, V., & Primbs, J. A. (1997). Finite receding horizon linear quadratic control: A unifying theory for stability and performance analysis. Technical Report CIT-CDS 97-001, California Institute of Technology, Pasadena, CA.
Parisini, 1995, A receding horizon regulator for nonlinear systems and a neural approximation, Automatica, 31, 1443, 10.1016/0005-1098(95)00044-W
Peterka, 1984, Predictor-based self tuning control, Automatica, 20, 39, 10.1016/0005-1098(84)90063-3
Polak, E. (1997), Optimization: Algorithms and consistent approximations. New York: Springer, ISBN 0-387-94971-2.
Polak, 1993, Moving horizon control of linear systems with input saturation and plant uncertainty — Part 1: Robustness, International Journal of Control, 58, 613, 10.1080/00207179308923019
Polak, 1993, Moving horizon control of linear systems with input saturation and plant uncertainty-Part 2: Disturbance rejection and tracking, International Journal of Control, 58, 639, 10.1080/00207179308923020
Poubelle, 1988, Fake algebraic Riccati techniques and stability, IEEE Transactions on Automatic Control, AC-31, 379, 10.1109/9.192194
Prett, D. M., & Gillette, R. D. (1980). Optimization and constrained multivariable control of a catalytic cracking unit. Proceedings of the joint automatic control conference WP5-c.
Primbs, J. A., & Nevistić, V. (1997). Constrained finite receding horizon linear quadratic control. Technical Report CIT-CDS 97-002, California Institute of Technology, Pasadena, CA.
Primbs, J. A., Nevistić, V., & Doyle, J. C. (1998). On receding horizon extensions and control Lyapunov functions. Proceedings of the American automatic control conference. pp. 3276–3280.
Propoi, 1963, Use of linear programming methods for synthesizing sampled-data automatic systems, Automation and Remote Control, 24, 837
Qin, S. J., & Badgwell, T. A. (1997). An overview of industrial model predictive control technology. In: J. C. Kantor, C. E. Garcı́a, & B. Carnahan (Eds.), Fifth International Conference on Chemical Process Control, CACHE, AIChE, (pp. 232–256).
Rao, C. V., & Rawlings, J. B. (1998). Nonlinear moving horizon estimation. Preprints of international symposium on nonlinear model predictive control: Assessment and future directions, Monte Verità, Ascona, Switzerland (pp. 146–163).
Rao, 1998, Application of interior-point methods to model predictive control, Journal of Optimization Theory and Applications, 99, 723, 10.1023/A:1021711402723
Rawlings, J. B., Meadows, E. S., & Muske, K. R. (1994). Nonlinear model predictive control: A tutorial and survey. ADCHEM’94 Proceedings, Kyoto, Japan (pp. 185–197).
Rawlings, 1993, Stability of constrained receding horizon control, IEEE Transactions on Automatic Control, AC-38, 1512, 10.1109/9.241565
Richalet, J., Rault, A., Testud, J. L., & Papon, J. (1976). Algorithmic control of industrial processes. Proceedings of the Fourth IFAC symposium on identification and system parameter estimation (pp. 1119–1167).
Richalet, 1978, Model predictive heuristic control: Applications to industrial processes, Automatica, 14, 413, 10.1016/0005-1098(78)90001-8
Ricker, N. L., Subrahmanian, T., & Sim, T. (1988). Case studies of model predictive control in pulp and paper production. Proceedings of the 1988 IFAC workshop on model based predictive control. Oxford: Pergamon Press (pp. 13–22).
Robertson, 1996, A moving horizon-based approach for least squares state estimation, A.I.Ch.E. Journal, 42, 2209, 10.1002/aic.690420811
Robertson, D., & Lee, J. (1996). Statistical interpretation of constrained moving horizon estimation. Proceedings of A.I.Ch.E annual meeting, Chicago, IL.
Rossiter, 1998, A numerically robust state-space approach to stable-predictive control strategies, Automatica, 34, 65, 10.1016/S0005-1098(97)00171-4
Scokaert, 1998, Min-max feedback model predictive control for constrained linear systems, IEEE Transactions on Automatic Control, 43, 1136, 10.1109/9.704989
Scokaert, 1999, Suboptimal model predictive control (feasibility implies stability), IEEE Transactions on Automatic Control, 44, 648, 10.1109/9.751369
Scokaert, 1998, Constrained linear quadratic regulation, IEEE Transactions on Automatic Control, 43, 1163, 10.1109/9.704994
Scokaert, 1997, Discrete-time stability with perturbations: Applications to model predictive control, Automatica, 33, 463, 10.1016/S0005-1098(96)00213-0
Scokaert, 1999, Feasibility issues in linear model predictive control, A.I.Ch.E. Journal, 45, 1649, 10.1002/aic.690450805
Slupphaug, O. (1998). On robust constrained nonlinear control and hybrid control BMI and MPC based state-feedback schemes, Ph.D. Norwegian University of Science and Technology.
Slupphaug, O., & Foss, B. A. (1997). Model predictive control for a class of hybrid systems, Proceedings of European control conference, Brussels, Belgium.
Soeterboek, R. (1992). Predictive control — a unified approach. Englewood Cliffs, NJ: Prentice-Hall.
Sznaier, M., & Damborg, M. J. (1987). Suboptimal control of linear systems with state and control inequality constraints, Proceedings of the 26th IEEE conference on decision and control, Los Angeles (pp. 761–762).
Sznaier, 1990, Heuristically enhanced feedback control of constrained discrete-time linear systems, Automatica, 26, 521, 10.1016/0005-1098(90)90023-B
Tadmor, 1992, Receding horizon revisited: An easy way to stabilize an LTV system, Systems & Control Letters, 8, 285, 10.1016/0167-6911(92)90058-Z
Thomas, 1975, Linear quadratic optimal estimation and control with receding horizon, Electronics Letters, 11, 19, 10.1049/el:19750015
van der Schaft, A. J. (1996). L2-gain and passivity techniques in nonlinear control. Berlin: Springer.
Vidyasagar, 1980, On the stabilization of nonlinear systems using state detection, IEEE Transactions on Automatic Control, 25, 504, 10.1109/TAC.1980.1102376
Vuthandam, 1995, Performance bounds for robust quadratic dynamic matrix control with end condition, A.I.Ch.E. Journal, 41, 2083, 10.1002/aic.690410908
Wright, S. J. (1997). Applying new optimization algorithms to model predictive control. In: J.C. Kantor, C.E. Garcı́a, B. Carnahan (Eds.), Fifth international conference on chemical process control, CACHE, AIChE (pp. 147–155).
Yang, 1993, Moving horizon control of nonlinear systems with input saturation, disturbances and plant uncertainty, International Journal of Control, 58, 875, 10.1080/00207179308923033
Ydstie, B. E. (1984). Extended horizon adaptive control. Proceedings of the Ninth world congress of IFAC, Budapest, Hungary.
Zheng, A. (1997). A computationally efficient nonlinear MPC algorithm. Proceedings of the American control conference, Albuquerque, NM (pp. 1623–1627).
Zheng, A., & Morari, M. (1993). Robust stability of constrained model predictive control, Proceedings of the American control conference (pp. 379–383).