Constrained energy problems with applications to orthogonal polynomials of a discrete variable
Tóm tắt
Từ khóa
Tài liệu tham khảo
P. Dragnev,Constrained energy problems for logarithmic potentials, Ph.D. Thesis, University of South Florida, Tampa (1997).
P. Dragnev and E. B. Saff,A problem in potential theory and zero asymptotics of Krawtchouk polynomials (submitted).
O. Frostman,Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Thesis, Meddel, Lunds Univ. Mat. Sem.3 (1935), 1–118.
E. Hille,Analytic Function Theory, Vol. 2, Ginn & Co., Boston, 1962.
V. Levenshtein,Krawtchouk polynomials and universal bounds for codes and design in Hamming spaces, IEEE Trans. Inform. Theory41 (1995), 1303–1321.
L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Media, 2nd ed., inCourse of Theoretical Physics, Vol. 8, Pergamon Press, Oxford, 1984.
R. J. McEliece, E. R. Rodemich, H. C. Rumsey and L. R. Welch,New upper bounds on the rate of a code via the Delsarte—MacWilliams inequalities, IEEE Trans. Inform. TheoryI-23 (1977), 157–166.
H. N. Mhaskar and E. B. Saff,Weighted analogues of capacity, transfinite diameter, and Chebyshev constant, Constr. Approx.8 (1992), 105–124.
E. A. Rakhmanov,Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable, Mat. Sb.187 (8) (1996), 109–124 (in Russian) = Sbornik:Mathematics187 (8) (1996), 1213–1228 (Engl. transi.).
E. B. Saff and V. Totik,Logarithmic Potentials with External Fields, Grundlehren der mathematischen Wissenschaften, Vol. 316, Springer-Verlag, Heidelberg, 1997.
G. Szegö,Orthogonal Polynomials, Vol. 23of Colloquium Publications, Amer. Math. Soc., Providence, R.I., 1975.
M. Tsuji,Potential Theory in Modem Function Theory, Maruzen, Tokyo, 1959.