Constrained Diffeomorphic Shape Evolution

Springer Science and Business Media LLC - Tập 12 - Trang 295-325 - 2011
Laurent Younes1
1Center for Imaging Science and Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, USA

Tóm tắt

We design optimal control strategies in spaces of diffeomorphisms and shape spaces in which the Eulerian velocities of the evolving deformations are constrained to belong to a suitably chosen finite-dimensional space, which is also following the motion. This results in a setting that provides a great flexibility in the definition of Riemannian metrics, extending previous approaches in which shape spaces are built as homogeneous spaces under the action of the diffeomorphism group equipped with a right-invariant metric. We provide specific instances of this general setting, and describe in detail the resulting numerical algorithms, with experimental illustrations in the case of plane curves.

Tài liệu tham khảo

R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd edn. (Addison-Wesley, Reading, 1987). A.A. Agrachev, Y.L. Sachkov, Control Theory from the Geometric Viewpoint, vol. 2 (Springer, Berlin, 2004). V.I. Arnold, Sur un principe variationnel pour les écoulements stationnaires des liquides parfaits et ses applications aux problemes de stabilité non linéaires, J. Méc. 5(1), 29–43 (1966). V.I. Arnold, Mathematical Methods of Classical Mechanics, vol. 60 (Springer, Berlin, 1989). F. Arrate, J.T. Ratnanather, L. Younes, Diffeomorphic active contours, SIAM J. Imaging Sci. 3(2), 176–198 (2010). B. Avants, J.C. Gee, Geodesic estimation for large deformation anatomical shape averaging and interpolation, NeuroImage 23, S139–S150 (2004). M.F. Beg, M.I. Miller, A. Trouvé, L. Younes, Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vis. 61(2), 139–157 (2005). A. Bellaiche, J.-J. Risler (eds.), Sub-Riemannian Geometry (Birkhauser, Boston, 1996). C.J. Cotter, The variational particle-mesh method for matching curves, J. Phys. A, Math. Theor. 41, 344003 (2008). C.J. Cotter, D.D. Holm, Continuous and discrete Clebsch variational principles, Found. Comput. Math. 9(2), 221–242 (2009). P. Dupuis, U. Grenander, M.I. Miller, Variational problems on flows of diffeomorphisms for image matching, Q. Appl. Math. 56(3), 587 (1998). S. Durrleman, Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. Ph.D. thesis, Universite de Nice-Sophia-Antipolis, 2010. J. Glaunès, A. Trouvé, L. Younes, Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching, in CVPR 2004 (IEEE, New York, 2004), pp. 712–718 J. Glaunès, A. Trouvé, L. Younes, Modeling Planar Shape Variation via Hamiltonian Flows of Curves (Springer, Berlin, 2006), pp. 335–361. J. Glaunès, A. Qiu, M.I. Miller, L. Younes, Large deformation diffeomorphic metric curve mapping, Int. J. Comput. Vis. 80(3), 317–336 (2008). U. Grenander, M.I. Miller, Computational anatomy: An emerging discipline, Q. Appl. Math. 56(4), 617–694 (1998). D.D. Holm, J.E. Marsden, Momentum Maps and Measure-Valued Solutions (Peakons, Filaments, and Sheets) for the EPDiff Equation (Springer, Berlin, 2005), pp. 203–235. D.D. Holm, J. Marsden, T.S. Ratiu, Euler–Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett. 80(19), 4173–4176 (1998). D.D. Holm, J. Munn, S.N. Stechmann, Reduced singular solutions of EPDiff equations on manifolds with symmetry (2004). arXiv:nlin/0402044. D.D. Holm, J.T. Ratnanather, A. Trouvé, L. Younes, Soliton dynamics in computational anatomy, NeuroImage 23(Suppl 1), S170–S178 (2004). A. Jain, L. Younes, A kernel class allowing for fast computations, J. Comput. Appl. Math. S.C. Joshi, M.I. Miller, Landmark matching via large deformation diffeomorphisms, IEEE Trans. Image Process. 9(8), 1357–1370 (2000). J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, vol. 17 (1999). S. Marsland, R. McLachlan, A Hamiltonian particle method for diffeomorphic image registration, in Information Processing in Medical Imaging (Springer, Berlin, 2007), pp. 396–407. M.I. Miller, A. Trouvé, L. Younes, On the metrics and Euler–Lagrange equations of computational anatomy, Annu. Rev. Biomed. Eng. 4, 375–405 (2002). M.I. Miller, A. Trouvé, L. Younes, Geodesic shooting for computational anatomy, J. Math. Imaging Vis. 24(2), 209–228 (2006). R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications (AMS, Providence, 2002). A. Trouve, Action de groupe de dimension infinie et reconnaissance de formes, C. R. Séances Acad. Sci., Sér. 1 Math. 321(8), 1031–1034 (1995). A. Trouvé, Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vis. (1998). A. Trouvé, L. Younes, Local geometry of deformable templates, SIAM J. Math. Anal. 37(1), 17 (2005). A. Trouvé, L. Younes, Shape Spaces (Springer, Berlin, 2011), pp. 1309–1362. M. Vaillant, J. Glaunes, Surface matching via currents, in IPMI 2005 (Springer, New York, 2005), pp. 381–392. L. Younes, Jacobi fields in groups of diffeomorphisms and applications, Q. Appl. Math. (2007). L. Younes, Shapes and Diffeomorphisms (Springer, Berlin, 2010). L. Younes, F. Arrate, M.I. Miller, Evolutions equations in computational anatomy, NeuroImage 45(Suppl 1), S40–S50 (2009).