Constitutive modelling of high strength titanium alloy Ti-6Al-4 V for sheet forming applications at room temperature
Tài liệu tham khảo
Badr, 2015, Forming of high strength titanium sheet at room temperature, Mater. Des., 66, 618, 10.1016/j.matdes.2014.03.008
Banabic, 2010, Advances in anisotropy and formability, Int. J. Mater. Form., 3, 165, 10.1007/s12289-010-0992-9
Banker, 1997, Titanium for secondary marine structures
Barlat, 2003, Plane stress yield function for aluminum alloy sheets—part 1: theory, Int. J. Plast., 19, 1297, 10.1016/S0749-6419(02)00019-0
Barlat, 2011, An alternative to kinematic hardening in classical plasticity, Int. J. Plast., 27, 1309, 10.1016/j.ijplas.2011.03.003
Cazacu, 2006, Orthotropic yield criterion for hexagonal closed packed metals, Int. J. Plast., 22, 1171, 10.1016/j.ijplas.2005.06.001
Chung, 1993, A deformation theory of plasticity based on minimum work paths, Int. J. Plast., 9, 907, 10.1016/0749-6419(93)90057-W
Chung, 1992, Finite element simulation of sheet metal forming for planar anisotropic metals, Int. J. Plast., 8, 453, 10.1016/0749-6419(92)90059-L
Conrad, 1981, Effect of interstitial solutes on the strength and ductility of titanium, Prog. Mater. Sci., 26, 123, 10.1016/0079-6425(81)90001-3
Djavanroodi, 2010, Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets, Mater. Des., 31, 4866, 10.1016/j.matdes.2010.05.030
Donachie, 2000
Flores, 2010, Accurate stress computation in plane strain tensile tests for sheet metal using experimental data, J. Mater. Process. Technol., 210, 1772, 10.1016/j.jmatprotec.2010.06.008
Gerd, 2007
Gilles, 2011, Experimental characterization and elasto-plastic modeling of the quasi-static mechanical response of TA-6 V at room temperature, Int. J. Solids Struct., 48, 1277, 10.1016/j.ijsolstr.2011.01.011
Gurrappa, 2003, Characterization of titanium alloy Ti-6Al-4 V for chemical, marine and industrial applications, Mater. Charact., 51, 131, 10.1016/j.matchar.2003.10.006
Hakoyama, 2012, Biaxial tensile test of high strength steel sheet for large plastic strain range, Key Eng. Mater., 504, 59, 10.4028/www.scientific.net/KEM.504-506.59
Hanabusa, 2013, Numerical verification of a biaxial tensile test method using a cruciform specimen, J. Mater. Process. Technol., 213, 961, 10.1016/j.jmatprotec.2012.12.007
Hill, R. A Theory of the Yielding and Plastic Flow of Anisotropic Metals. 1948.
Hosford, 1996, On the crystallographic basis of yield criteria, Textures Microstruct., 27, 479, 10.1155/TSM.26-27.479
Hu, 2002, 6
Iadicola, 2014, Advanced biaxial cruciform testing at the NIST center for automotive lightweighting, 8, 277
Khan, 2007, Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti–6Al–4 V titanium alloy over wide ranges of strain rates and temperatures, Int. J. Plast., 23, 931, 10.1016/j.ijplas.2006.08.006
Knezevic, 2013, Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements, Mater. Sci. Eng. A, 564, 116, 10.1016/j.msea.2012.11.037
Kuwabara, 2000, Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets, Acta Materialia, 48, 2071, 10.1016/S1359-6454(00)00048-3
Kuwabara, 2009, Tension-compression asymmetry of phosphor bronze for electronic parts and its effect on bending behavior, Int. J. Plast., 25, 1759, 10.1016/j.ijplas.2009.01.004
Kuwabara, 1998, Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension, J. Mater. Process. Technol., 80, 517, 10.1016/S0924-0136(98)00155-1
Lademo, 1999, Evaluation of yield criteria and flow rules for aluminum alloys, Int. J. Plast., 15, 191, 10.1016/S0749-6419(98)00064-3
Lecompte, 2007, Mixed numerical–experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens, Int. J. Solids Struct., 44, 1643, 10.1016/j.ijsolstr.2006.06.050
Lee, 2012, Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction, Int. J. Plast., 29, 13, 10.1016/j.ijplas.2011.07.007
Lee, 2012, An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw/bending, Int. J. Solids Struct., 49, 3562, 10.1016/j.ijsolstr.2012.03.042
Lee, 2005, Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions: Part II: Characterization of material properties, Int. J. Plast., 21, 883
Lee, 2008, Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets, Int. J. Plast., 24, 545, 10.1016/j.ijplas.2007.05.004
Lemoine, 2008, Bauschinger effect correspondence of experimental tests, Int. J. Mater. Form., 1, 241, 10.1007/s12289-008-0357-9
Logan, 1980, Upper-bound anisotropic yield locus calculations assuming < 111>-pencil glide, Int. J. Mech. Sci., 22, 419, 10.1016/0020-7403(80)90011-9
Lowden, 1975, Texture strengthening and strength differential in titanium-6Al-4 V, Metall. Trans. A, 6, 441, 10.1007/BF02658401
Moiseyev, 2005
Nixon, 2010, Anisotropic response of high-purity α-titanium: experimental characterization and constitutive modeling, Int. J. Plast., 26, 516, 10.1016/j.ijplas.2009.08.007
Paul, 2011, Cyclic plastic deformation behavior in SA333 Gr. 6 C–Mn steel, Mater. Sci. Eng. A, 528, 7341, 10.1016/j.msea.2011.06.009
Pederson, 2002, Microstructure and phase transformation of Ti-6Al-4 V
Peters, 2003, Titanium alloys for aerospace applications, Adv. Eng. Mater., 5, 419, 10.1002/adem.200310095
Peters, 1984, Influence of texture on fatigue properties of Ti-6Al-4 V, Metall. Trans. A, 15, 1597, 10.1007/BF02657799
Plunkett, 2006, Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening, Acta Materialia, 54, 4159, 10.1016/j.actamat.2006.05.009
Plunkett, 2008, Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals, Inter. J. Plast., 24, 847, 10.1016/j.ijplas.2007.07.013
Prakash, 2010, Deformation twinning in Ti-6Al-4 V during low strain rate deformation to moderate strains at room temperature, Mater. Sci. Eng. A, 527, 5734, 10.1016/j.msea.2010.05.039
Salem, 2003, Strain hardening of titanium: role of deformation twinning, Acta Materialia, 51, 4225, 10.1016/S1359-6454(03)00239-8
Schauerte, 2005
Simof, J. and T. Hughes, Computational Inelasticity. 2008.
Standard, 2008
Sutton, 2009, 10
Thomas Jr, J.F., Determination Of Constitutive Equations For High Strength Aluminum And Titanium Alloys Applicable To Sheet Metal Formability. 1979, DTIC Document.
Tirry, 2010, A multi-scale characterization of deformation twins in Ti6Al4V sheet material deformed by simple shear, Mater. Sci. Eng. A, 527, 4136, 10.1016/j.msea.2010.03.039
Welsh, 1994
VIC-3D User Manual. Correlated Solutions, Columbia, SC, 2005. http://www.correlatedsolutions.com/vic-3d/ (accessed 15.03.14).
Yapici, 2006, Mechanical twinning and texture evolution in severely deformed Ti–6Al–4 V at high temperatures, Acta Materialia, 54, 3755, 10.1016/j.actamat.2006.04.007
Yoshida, 2002, Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain, Int. J. Plast., 18, 633, 10.1016/S0749-6419(01)00049-3
Zaefferer, 2003, A study of active deformation systems in titanium alloys: dependence on alloy composition and correlation with deformation texture, Mater. Sci. Eng. A, 344, 20, 10.1016/S0921-5093(02)00421-5