Constitutive modelling of high strength titanium alloy Ti-6Al-4 V for sheet forming applications at room temperature

International Journal of Solids and Structures - Tập 80 - Trang 334-347 - 2016
Ossama Mamdouh Badr1, Frédéric Barlat2, Bernard Rolfe3, Myoung-Gyu Lee4, Peter Hodgson1, Matthias Weiss1
1Institute for Frontier Materials, Deakin University, Waurn Ponds, Pigdons Rd., VIC. 3217, Australia
2Graduate Institute for Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), 31 Hyoja-dong, Nam-gu, Pohang 790-784, Republic of Korea
3School of Engineering, Deakin University, Waurn Ponds, Pigdons Rd., Vic, 3216, Australia
4Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea

Tài liệu tham khảo

Badr, 2015, Forming of high strength titanium sheet at room temperature, Mater. Des., 66, 618, 10.1016/j.matdes.2014.03.008 Banabic, 2010, Advances in anisotropy and formability, Int. J. Mater. Form., 3, 165, 10.1007/s12289-010-0992-9 Banker, 1997, Titanium for secondary marine structures Barlat, 2003, Plane stress yield function for aluminum alloy sheets—part 1: theory, Int. J. Plast., 19, 1297, 10.1016/S0749-6419(02)00019-0 Barlat, 2011, An alternative to kinematic hardening in classical plasticity, Int. J. Plast., 27, 1309, 10.1016/j.ijplas.2011.03.003 Cazacu, 2006, Orthotropic yield criterion for hexagonal closed packed metals, Int. J. Plast., 22, 1171, 10.1016/j.ijplas.2005.06.001 Chung, 1993, A deformation theory of plasticity based on minimum work paths, Int. J. Plast., 9, 907, 10.1016/0749-6419(93)90057-W Chung, 1992, Finite element simulation of sheet metal forming for planar anisotropic metals, Int. J. Plast., 8, 453, 10.1016/0749-6419(92)90059-L Conrad, 1981, Effect of interstitial solutes on the strength and ductility of titanium, Prog. Mater. Sci., 26, 123, 10.1016/0079-6425(81)90001-3 Djavanroodi, 2010, Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets, Mater. Des., 31, 4866, 10.1016/j.matdes.2010.05.030 Donachie, 2000 Flores, 2010, Accurate stress computation in plane strain tensile tests for sheet metal using experimental data, J. Mater. Process. Technol., 210, 1772, 10.1016/j.jmatprotec.2010.06.008 Gerd, 2007 Gilles, 2011, Experimental characterization and elasto-plastic modeling of the quasi-static mechanical response of TA-6 V at room temperature, Int. J. Solids Struct., 48, 1277, 10.1016/j.ijsolstr.2011.01.011 Gurrappa, 2003, Characterization of titanium alloy Ti-6Al-4 V for chemical, marine and industrial applications, Mater. Charact., 51, 131, 10.1016/j.matchar.2003.10.006 Hakoyama, 2012, Biaxial tensile test of high strength steel sheet for large plastic strain range, Key Eng. Mater., 504, 59, 10.4028/www.scientific.net/KEM.504-506.59 Hanabusa, 2013, Numerical verification of a biaxial tensile test method using a cruciform specimen, J. Mater. Process. Technol., 213, 961, 10.1016/j.jmatprotec.2012.12.007 Hill, R. A Theory of the Yielding and Plastic Flow of Anisotropic Metals. 1948. Hosford, 1996, On the crystallographic basis of yield criteria, Textures Microstruct., 27, 479, 10.1155/TSM.26-27.479 Hu, 2002, 6 Iadicola, 2014, Advanced biaxial cruciform testing at the NIST center for automotive lightweighting, 8, 277 Khan, 2007, Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti–6Al–4 V titanium alloy over wide ranges of strain rates and temperatures, Int. J. Plast., 23, 931, 10.1016/j.ijplas.2006.08.006 Knezevic, 2013, Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements, Mater. Sci. Eng. A, 564, 116, 10.1016/j.msea.2012.11.037 Kuwabara, 2000, Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets, Acta Materialia, 48, 2071, 10.1016/S1359-6454(00)00048-3 Kuwabara, 2009, Tension-compression asymmetry of phosphor bronze for electronic parts and its effect on bending behavior, Int. J. Plast., 25, 1759, 10.1016/j.ijplas.2009.01.004 Kuwabara, 1998, Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension, J. Mater. Process. Technol., 80, 517, 10.1016/S0924-0136(98)00155-1 Lademo, 1999, Evaluation of yield criteria and flow rules for aluminum alloys, Int. J. Plast., 15, 191, 10.1016/S0749-6419(98)00064-3 Lecompte, 2007, Mixed numerical–experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens, Int. J. Solids Struct., 44, 1643, 10.1016/j.ijsolstr.2006.06.050 Lee, 2012, Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction, Int. J. Plast., 29, 13, 10.1016/j.ijplas.2011.07.007 Lee, 2012, An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw/bending, Int. J. Solids Struct., 49, 3562, 10.1016/j.ijsolstr.2012.03.042 Lee, 2005, Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions: Part II: Characterization of material properties, Int. J. Plast., 21, 883 Lee, 2008, Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets, Int. J. Plast., 24, 545, 10.1016/j.ijplas.2007.05.004 Lemoine, 2008, Bauschinger effect correspondence of experimental tests, Int. J. Mater. Form., 1, 241, 10.1007/s12289-008-0357-9 Logan, 1980, Upper-bound anisotropic yield locus calculations assuming < 111>-pencil glide, Int. J. Mech. Sci., 22, 419, 10.1016/0020-7403(80)90011-9 Lowden, 1975, Texture strengthening and strength differential in titanium-6Al-4 V, Metall. Trans. A, 6, 441, 10.1007/BF02658401 Moiseyev, 2005 Nixon, 2010, Anisotropic response of high-purity α-titanium: experimental characterization and constitutive modeling, Int. J. Plast., 26, 516, 10.1016/j.ijplas.2009.08.007 Paul, 2011, Cyclic plastic deformation behavior in SA333 Gr. 6 C–Mn steel, Mater. Sci. Eng. A, 528, 7341, 10.1016/j.msea.2011.06.009 Pederson, 2002, Microstructure and phase transformation of Ti-6Al-4 V Peters, 2003, Titanium alloys for aerospace applications, Adv. Eng. Mater., 5, 419, 10.1002/adem.200310095 Peters, 1984, Influence of texture on fatigue properties of Ti-6Al-4 V, Metall. Trans. A, 15, 1597, 10.1007/BF02657799 Plunkett, 2006, Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening, Acta Materialia, 54, 4159, 10.1016/j.actamat.2006.05.009 Plunkett, 2008, Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals, Inter. J. Plast., 24, 847, 10.1016/j.ijplas.2007.07.013 Prakash, 2010, Deformation twinning in Ti-6Al-4 V during low strain rate deformation to moderate strains at room temperature, Mater. Sci. Eng. A, 527, 5734, 10.1016/j.msea.2010.05.039 Salem, 2003, Strain hardening of titanium: role of deformation twinning, Acta Materialia, 51, 4225, 10.1016/S1359-6454(03)00239-8 Schauerte, 2005 Simof, J. and T. Hughes, Computational Inelasticity. 2008. Standard, 2008 Sutton, 2009, 10 Thomas Jr, J.F., Determination Of Constitutive Equations For High Strength Aluminum And Titanium Alloys Applicable To Sheet Metal Formability. 1979, DTIC Document. Tirry, 2010, A multi-scale characterization of deformation twins in Ti6Al4V sheet material deformed by simple shear, Mater. Sci. Eng. A, 527, 4136, 10.1016/j.msea.2010.03.039 Welsh, 1994 VIC-3D User Manual. Correlated Solutions, Columbia, SC, 2005. http://www.correlatedsolutions.com/vic-3d/ (accessed 15.03.14). Yapici, 2006, Mechanical twinning and texture evolution in severely deformed Ti–6Al–4 V at high temperatures, Acta Materialia, 54, 3755, 10.1016/j.actamat.2006.04.007 Yoshida, 2002, Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain, Int. J. Plast., 18, 633, 10.1016/S0749-6419(01)00049-3 Zaefferer, 2003, A study of active deformation systems in titanium alloys: dependence on alloy composition and correlation with deformation texture, Mater. Sci. Eng. A, 344, 20, 10.1016/S0921-5093(02)00421-5