Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình Tính Toán Đặc Trưng Của Hành Vi Biến Dạng Nóng Của Thép Không Gỉ Martensitic Hợp Kim Nitơ
Tóm tắt
Mối quan hệ giữa ứng suất dòng chảy với biến dạng, tốc độ biến dạng và nhiệt độ là phức tạp và thường được mô tả bằng các phương trình quy luật. Các phương trình quy luật là một trong những đầu vào chính cho mô phỏng gia công nóng sử dụng phương pháp phần tử hữu hạn (FEM). Nghiên cứu hiện tại tập trung vào việc dự đoán hành vi dòng chảy ở nhiệt độ cao của thép không gỉ martensitic Fe-15.9Cr-1.7Mo-0.43C-0.14Nb-0.22N (wt%) hợp kim nitơ bằng cách sử dụng các phương trình quy luật. Các đường cong dòng chảy thu được từ các thí nghiệm nén nóng lào nhiệt độ ổn định được thực hiện trong khoảng nhiệt độ 1173–1423 K và khoảng tốc độ biến dạng 0.001–10 s−1 đã được sử dụng để lập mô hình. Các mô hình Johnson Cook (JC), Johnson Cook Đã Sửa Đổi (m-JC) và mạng nơron nhân tạo (ANN) đã được sử dụng để xây dựng hành vi biến dạng nóng. Độ chính xác của các dự đoán được đánh giá bằng các tham số như hệ số tương quan (R) và sai số tuyệt đối tương đối trung bình (AARE). Các mô hình JC và m-JC cho thấy AARE lần lượt là 19.6% và 1.2%. Để phát triển mô hình ANN, một số thuật toán huấn luyện và hàm chuyển giao tốt nhất đã được khám phá. Phương pháp điều chỉnh Bayesian sử dụng hàm chuyển giao hyperbolic tangent đã cho kết quả tốt nhất với AARE là 0.3% và hệ số tương quan là 0.999.
Từ khóa
#ứng suất dòng chảy #biến dạng #tốc độ biến dạng #nhiệt độ #phương trình quy luật #mô phỏng gia công nóng #thép không gỉ martensitic #mạng nơron nhân tạo #thuật toán huấn luyện #hàm chuyển giaoTài liệu tham khảo
Altan T, Ngaile G (2005) Cold and hot forging. ASM International, Cleveland
Antonio B, Dina P (2016) Artificial neural networks to correlate hot deformation cooling rate and deformation temperature on continuous cooling transformation of 22MnB5 steel. WSEAS Trans Appl Theor Mech 11:154–159
Asuero AG, Sayago A, González AG (2006) The correlation coefficient: an overview. Crit Rev Anal Chem 36:41–59. https://doi.org/10.1080/10408340500526766
Baughman DR, Liu YA (1995) Fundamental and practical aspects of neural computing. Neural Netw Bioprocess Chem Eng. https://doi.org/10.1016/b978-0-12-083030-5.50008-4
Bhadeshia HKDH (2012) Progress in materials science steels for bearings. Prog Mater Sci 57:268–435. https://doi.org/10.1016/j.pmatsci.2011.06.002
Fathi E, Maleki Shoja B (2018) Deep neural networks for natural language processing. Handbook of Statistics, 1st edn. Elsevier B.V, Amsterdam. https://doi.org/10.1016/bs.host.2018.07.006
Gangi Setti S, Rao RN (2014) Artificial neural network approach for prediction of stress-strain curve of near β titanium alloy. Rare Met 33:249–257. https://doi.org/10.1007/s12598-013-0182-2
Goetz RL, Semiatin SL (2001) The adiabatic correction factor for deformation heating during the uniaxial compression test. J Mater Eng Perform 10:710–717. https://doi.org/10.1361/105994901770344593
Guo LF, Li BC, Zhang ZM (2013) Constitutive relationship model of TC21 alloy based on artificial neural network. Trans Nonferrous Met Soc China (English Ed). 23:1761–1765. https://doi.org/10.1016/S1003-6326(13)62658-8
Haghdadi N, Zarei-Hanzaki A, Khalesian AR, Abedi HR (2013) Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy. Mater Des 49:386–391. https://doi.org/10.1016/j.matdes.2012.12.082
He A, Xie G, Zhang H, Wang X (2013) A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Mater Des 52:677–685. https://doi.org/10.1016/j.matdes.2013.06.010
Hou QY, Wang JT (2010) A modified Johnson-Cook constitutive model for Mg-Gd-Y alloy extended to a wide range of temperatures. Comput Mater Sci 50:147–152. https://doi.org/10.1016/j.commatsci.2010.07.018
Hu M (2018) Correction of flow curves and constitutive modelling of a Ti-6Al-4V alloy. Metals. https://doi.org/10.3390/met8040256
Johnson GR (1983) A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. In: Proceedings: seventh international symposium on Ballistics. pp 541–547
Kant R, Joshi SN, Dixit US (2015) An integrated FEM-ANN model for laser bending process with inverse estimation of absorptivity. Mech Adv Mater Mod Process 1:1–12. https://doi.org/10.1186/s40759-015-0006-1
Kessler BS, El-Gizawy AS (2005) A virtual model for aluminum hot forging using an artificial neural network material model within finite element analysis. In: Proc. ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf.—DETC2005 3 B, pp 1039–1048. https://doi.org/10.1115/detc2005-85257
Krishna SC, Tharian KT, Chakravarthi KVA, Jha AK, Pant B (2016) Heat treatment and thermo-mechanical treatment to modify carbide banding in AISI 440C Steel: a case study. Metallogr Microstruct Anal 5:108–115. https://doi.org/10.1007/s13632-016-0266-0
Krishna SC, Karthick NK, Jha AK, Pant B, Venkitakrishnan PV (2017) Microstructure and properties of nitrogen-alloyed martensitic stainless steel. Metallogr Microstruct Anal 6:425–432. https://doi.org/10.1007/s13632-017-0381-6
Lampinen J, Vehtari A (2000) Bayesian techniques for neural networks—review and case studies. In: European signal processing conference. 2015-March.
Lin YC, Chen XM (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des 32:1733–1759. https://doi.org/10.1016/j.matdes.2010.11.048
Lin YC, Chen XM, Liu G (2010) A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel. Mater Sci Eng A 527:6980–6986. https://doi.org/10.1016/j.msea.2010.07.061
Liu J, Chang H, Hsu TY, Ruan X (2000) Prediction of the flow stress of high-speed steel during hot deformation using a BP artificial neural network. J Mater Process Technol 103:200–205. https://doi.org/10.1016/S0924-0136(99)00444-6
Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6:525–533
Rakhshkhorshid M, Rastegari H (2016) Neural network prediction of warm deformation flow curves in ferrite + cementite region. Int J Iron Steel Soc Iran 13:15–19
Reza M, Botlani M (2011) Application of Bayesian neural networks to predict strength and grain size of hot strip low carbon steels. Artif Neural Networks Ind Control Eng Appl. https://doi.org/10.5772/15922
Salami ES, Ehetshami M, Karimi-Jashni A, Salari M, Sheibani SN, Ehteshami A (2016) A mathematical method and artificial neural network modeling to simulate osmosis membrane’s performance. Model Earth Syst Environ. https://doi.org/10.1007/s40808-016-0261-0
Samantaray D, Mandal S, Bhaduri AK, Sivaprasad PV (2010) An overview on constitutive modelling to predict elevated temperature flow behaviour of fast reactor structural materials. Trans Indian Inst Met 63:823–831. https://doi.org/10.1007/s12666-010-0126-6
Scott Kessler B, El-Gizawy AS, Smith DE (2007) Incorporating neural network material models within finite element analysis for rheological behavior prediction. J Press Vessel Technol Trans ASME 129:58–65. https://doi.org/10.1115/1.2389004
Sun Y, Zeng WD, Zhao YQ, Qi YL, Ma X, Han YF (2010) Development of constitutive relationship model of Ti600 alloy using artificial neural network. Comput Mater Sci 48:686–691. https://doi.org/10.1016/j.commatsci.2010.03.007
Sun Y, Zeng WD, Zhao YQ, Zhang XM, Shu Y, Zhou YG (2011) Modeling constitutive relationship of Ti40 alloy using artificial neural network. Mater Des 32:1537–1541. https://doi.org/10.1016/j.matdes.2010.10.004
Vural M, Caro J (2009) Experimental analysis and constitutive modeling for the newly developed 2139–T8 alloy. Mater Sci Eng A 520:56–65. https://doi.org/10.1016/j.msea.2009.05.026
Wilson P, Mantooth HA, Wilson P, Mantooth HA (2013) Model-based optimization techniques. Model Eng Complex Electron Syst. https://doi.org/10.1016/B978-0-12-385085-0.00010-5
Zhang H, Wen W, Cui H (2009) Behaviors of IC10 alloy over a wide range of strain rates and temperatures: experiments and modeling. Mater Sci Eng A 504:99–103. https://doi.org/10.1016/j.msea.2008.10.056