Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis

Jr-Shiuan Yang1, Thomas Maurin2, Nicolas Robine2, K Rasmussen3, Kate L. Jeffrey4, Rohit Chandwani4, Eirini P. Papapetrou5, Michel Sadelain5, Dónal O’Carroll3, Eric C. Lai2
1Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
2Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065;
3European Molecular Biology Laboratory, Mouse Biology Unit, 00015 Monterotondo Scalo, Italy;
4Laboratory for Lymphocyte Signaling, The Rockefeller University, New York, NY 10065; and
5Center for Cell Engineering, Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065

Tóm tắt

Canonical animal microRNAs (miRNAs) are generated by sequential cleavage of precursor substrates by the Drosha and Dicer RNase III enzymes. Several variant pathways exploit other RNA metabolic activities to generate functional miRNAs. However, all of these pathways culminate in Dicer cleavage, suggesting that this is a unifying feature of miRNA biogenesis. Here, we show that maturation of miR-451, a functional miRNA that is perfectly conserved among vertebrates, is independent of Dicer. Instead, structure-function and knockdown studies indicate that Drosha generates a short pre-mir-451 hairpin that is directly cleaved by Ago2 and followed by resection of its 3′ terminus. We provide stringent evidence for this model by showing that Dicer knockout cells can generate mature miR-451 but not other miRNAs, whereas Ago2 knockout cells reconstituted with wild-type Ago2, but not Slicer-deficient Ago2, can process miR-451. Finally, we show that the mir-451 backbone is amenable to reprogramming, permitting vector-driven expression of diverse functional miRNAs in the absence of Dicer. Beyond the demonstration of an alternative strategy to direct gene silencing, these observations open the way for transgenic rescue of Dicer conditional knockouts.

Từ khóa


Tài liệu tham khảo

10.1038/nrg2455

10.1038/nrm2632

10.1038/nrg2290

10.1016/j.molcel.2004.07.007

10.1126/science.1102513

10.1016/j.cell.2007.06.028

10.1038/nature05983

10.1016/j.molcel.2007.09.028

10.1016/j.molcel.2008.10.017

10.1261/rna.1528909

10.1101/gad.1705308

10.1261/rna.1738409

10.1016/j.molcel.2009.12.016

10.1093/nar/gki567

10.1186/gb-2003-4-7-r42

10.1016/j.cell.2004.12.031

10.1261/rna.646007

10.1186/1471-2164-11-288

10.1038/nature06904

10.1101/gad.1814809

10.1016/j.immuni.2010.05.009

10.1038/nbt1394

10.1101/gr.074740.107

10.1093/nar/20.15.3891

10.1002/stem.257

10.1073/pnas.0712312105

10.1084/jem.20100458

10.1101/gr.6597907

10.1038/nsmb.1536

10.1016/j.cell.2009.07.001

10.1016/j.cell.2007.10.032

10.1038/ng1744

10.1101/gad.1565607

10.1126/science.1109020

10.1093/nar/gkp812

10.1126/science.1097434

10.1038/nature06908

10.1038/nature09092

10.1126/science.1190809

10.1073/pnas.0504834102

10.1084/jem.20050678

10.1038/ng1253

10.1016/j.cell.2009.08.002

10.1016/j.cell.2010.01.019