Conservation status of vascular epiphytes in the neotropics
Biodiversity and Conservation - Trang 1-21 - 2023
Tóm tắt
The Neotropical realm hosts some of the Earth’s most species-rich biodiversity hotspots, with vascular epiphytes significantly contributing to this diversity, regionally accounting for up to 39% of the vascular flora. However, many regions of the Neotropics where epiphytic species of restricted distribution are reported coincide with threatened ecosystems, such as the tropical montane cloud forest. Moreover, epiphytes may be especially vulnerable to land use and climate change impacts due to their dependence on host trees. We assessed the conservation status of vascular epiphytes in the Neotropics for the families that represent over 80% of the global epiphyte diversity (Araceae, Bromeliaceae, Orchidaceae, Piperaceae, and Polypodiaceae) and identified geographical centres of accumulation of threatened epiphyte species. We gathered information from free-access web repositories, specific epiphytic plant databases, and scientific and grey literature. We assessed the extinction risk of 11,446 epiphyte species following IUCN Red List guidelines, using Criterion B (geographic range size). We found nearly 60% (6,721 species) to be threatened, with 1,766 critically endangered (CR), 3,537 endangered (EN), and 1,418 vulnerable (VU). The threatened species are mainly found in the centres of endemism of vascular epiphytes in Central America, the northern Andes, and the Atlantic Forest. Our study emphasises that the centres of threatened species largely coincide with diversity hotspots, highlighting epiphytes as an especially vulnerable group that requires urgent conservation actions.
Tài liệu tham khảo
Aguilar-Cruz Y, García‐Franco JG, Zotz G (2022) Litter‐trapping tank bromeliads in five different forests: Carbon and nutrient pools and fluxes. Biotropica 54:170–180. https://doi.org/10.1111/btp.13048
Alves-Pinto H, Geldmann J, Jonas H, Maioli V, Balmford A, Latawiec AE, Crouzeilles R, Strassburg B (2021) Opportunities and Challenges of other effective area-based conservation measures (OECMs) for Biodiversity Conservation. Perspect Ecol Conserv 19:115–120. https://doi.org/10.1016/j.pecon.2021.01.004
Araujo ML, Quaresma AC, Ramos FN (2022) GBIF information is not enough: national database improves the inventory completeness of amazonian epiphytes. Biodivers Conserv 31:2797–2815. https://doi.org/10.1007/s10531-022-02458-x
Armenta-Montero S, Carvajal-Hernández CI, Ellis EA, Krömer T (2015) Distribution and conservation status of Phlegmariurus (Lycopodiaceae) in the state of Veracruz, Mexico. Trop Conserv Sci 8:114–137. https://doi.org/10.1177/194008291500800111
Bachman SP, Field R, Reader T, Raimondo D, Donaldson J, Schatz GE, Nic Lughadha EN (2019) Progress, challenges and opportunities for Red Listing. Biol Conserv 234:45–55. https://doi.org/10.1016/j.biocon.2019.03.002
Baillie J, Hilton-Taylor C, Stuart S (eds) (2004) 2004 IUCN red list of threatened species: a global species assessment. The IUCN Species Survival Commission. IUCN, Gland, Switzerland and Cambridge, UK
Belote, R. Travis, Kevin Barnett, Matthew S. Dietz, Laura Burkle, Clinton N. Jenkins, Lindsay Dreiss, Jocelyn L. Aycrigg, and Gregory H. Aplet. 2021. Options for prioritizing sites for biodiversity conservation with implications for ‘30 by 30.’ Biol Conserv 264 (December): 109378. https://doi.org/10.1016/j.biocon.2021.109378.
Benzing DH (1986) The vegetative basis of vascular epiphytism. Selbyana 9:23–43
Benzing DH, Seemann J (1978) Nutritional piracy and host decline: a new perspective on the epiphyte-host relationship. Selbyana 2:133–148
Borgelt J, Dorber M, Høiberg MA, Verones M (2022) More than half of data deficient Species predicted to be threatened by extinction. Commun Biology 5(1):679. https://doi.org/10.1038/s42003-022-03638-9
Brooks TM, Pimm SL, Akçakaya HR, Buchanan GM, Butchart SHM, Foden W, Hilton-Taylor C, Hoffman M, Jenkins CN, Joppa L, Li BV, Menon V, Ocampo-Peñuela N, Rondinini C (2019) Measuring terrestrial area of Habitat (AOH) and its utility for the IUCN Red List. Trends Ecol Evol 34(11):977–986. https://doi.org/10.1016/j.tree.2019.06.009
Brummitt NA, Bachman SP, Griffiths-Lee J, Lutz M, Moat JF, Farjon A, Donaldson JS, Hilton-Taylor C, Meagher TR, Albuquerque S, Aletrari E, Andrews AK, Atchison G, Baloch E, Barlozzini B, Brunazzi A, Carretero J, Celesti M, Chadburn H, Cianfoni E, Cockel C, Coldwell V, Concetti B, Contu S, Crook V, Dyson P, Gardiner L, Ghanim N, Greene H, Groom A, Harker R, Hopkins D, Khela S, Lakeman-Fraser P, Lindon H, Lockwood H, Loftus C, Lombrici D, Lopez-Poveda L, Lyon J, Malcolm-Tompkins P, McGregor K, Moreno L, Murray L, Nazar K, Power E, Tuijtelaars Q, Salter M, Segrott R, Thacker R, Thomas H, Tingvoll LJ, Watkinson S, Wojtaszekova G, Lughadha K., Nic, E (2015) Green plants in the Red: a Baseline Global Assessment for the IUCN Sampled Red List Index for plants. PLoS ONE 10:e0135152. https://doi.org/10.1371/journal.pone.0135152
Bruner AG, Gullison RE, Rice RE, Da Fonseca GAB (2001) Effectiveness of Parks in protecting Tropical Biodiversity. Science 291(5501):125–128. https://doi.org/10.1126/science.291.5501.125
Butchart SHM, Scharlemann JPW, Evans MI, Quader S, Aricò S, Arinaitwe J, Balman M, Bennun LA, Bertzky B, Besacon C, Boucher TM, Brooks TM, Burfield IJ, Burgess N, Chan S, Clay R, Mike J, Crosby, Davidson NC, De Silva N, Devenish C, Dutson CGL, Díaz Fernández DF, Fishpool LDC, Fitzgerald C, Foster M, Heath MF, Hockings M, Hoffmann M, Knox D, Larsen FW, Lamoreux JF, Loucks C, May I, Millett J, Molloy D, Morling P, Parr M, Ricketts TH, Seddon N, Skolnik B, Stuart SN, Upgren A, Woodley. S (2012) ‘Protecting Important Sites for Biodiversity Contributes to Meeting Global Conservation Targets’. Edited by Peter M. Bennett. PLoS ONE 7 (3): e32529. https://doi.org/10.1371/journal.pone.0032529
Caballero-Rueda LM, Rodríguez N, Martín C (1997) Dinámica de elementos en epífitos de un bosque altoandino de la Cordillera Oriental de Colombia. Caldasia 19:311–322
Calderon E (2007) Orquídeas, primera parte. Libro Rojo. Instituto Humboldt., Bogota, Colombia
Callejas R (2020) In: Piperaceae FM (ed) Universidad Nacional Autónoma de México, Instituto de Biología; Missouri Botanical Garden; Natural History Museum (London). [London], México, D.F.: :. [St. Louis, Mo.]
Callmander MW, Schatz GE, Lowry PP (2005) IUCN Red List assessment and the global strategy for Plant Conservation: taxonomists must act now. Taxon 54:1047–1050. https://doi.org/10.2307/25065491
Cardelús CL, Colwell RK, Watkins JE (2006) Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. J Ecol 94:144–156. https://doi.org/10.1111/j.1365-2745.2005.01052.x
Cazalis V, Di Marco M, Butchart SHM, Akçakaya HR, González-Suárez M, Meyer C, Clausnitzer V, Böhm M, Zizka A, Cardoso P, Schipper AM, Bachman SP, Young BE, Hoffmann M, Benítez-López A, Lucas PM, Pettorelli N, Patoine G, Pacifici M, Jörger-Hickfang T, Brooks TM, Rondinini C, Hill SLL, Visconti P, Santini L (2022) Bridging the research-implementation gap in IUCN Red List assessments. Trends Ecol Evol 37:359–370. https://doi.org/10.1016/j.tree.2021.12.002
Christiansen FB, Fenchel TM (2012) Theories of populations in biological communities. Springer Science & Business Media
Christmann T, Palomeque X, Armenteras D, Wilson SJ, Malhi Y, Oliveras Menor I (2023) Disrupted montane forest recovery hinders biodiversity conservation in the tropical Andes. Glob Ecol Biogeogr 32:793–808. https://doi.org/10.1111/geb.13666
CITES (1973) Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres. https://www.cites.org/esp/disc/text.php (accessed 1.1.16).
Cockle A (2001) The dispersal and recruitment of Cyclanthaceae and Philodendron (Araceae) understorey root-climbing vines. In: Bongers F, Charles-Dominique P, Forget P-M, Théry M (eds) Nouragues, Monographiae Biologicae. Springer Netherlands, Dordrecht, pp 251–264. https://doi.org/10.1007/978-94-015-9821-7_24
Core Team R (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria
Cruz-García G (2015) The Wild Orchid Trade in a Mexican Local Market: Diversity and Economics. Econ Bot 69(4):291–305. https://doi.org/10.1007/s12231-015-9321-z. Lucita Lagunez-Rivera, Manuel Gerardo Chavez-Angeles, and Rodolfo Solano-Gómez
Dauby G, Stévart T, Droissart V, Cosiaux A, Deblauwe V, Simo-Droissart M, Sosef MSM, Lowry PP, Schatz GE, Gereau RE, Couvreur TLP (2017) ConR: an R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol Evol 7:11292–11303. https://doi.org/10.1002/ece3.3704
Davis BJ, Phillips RD, Wright M, Linde CC, Dixon KW (2015) Continent-wide distribution in mycorrhizal fungi: implications for the biogeography of specialised orchids. Ann Botany 116:413–421. https://doi.org/10.1093/aob/mcv084
de Figueiredo RA, Sazima M (2007) Phenology and pollination biology of eight Peperomia species (Piperaceae) in semideciduous forests in Southeastern Brazil. Plant Biol 9:136–141. https://doi.org/10.1055/s-2006-924543
Dinerstein E, Vynne C, Sala E, Joshi AR, Fernando S, Lovejoy TE, Mayorga J, Olson D, Asner GP, Baillie JEM, Burgess ND, Burkart K, Noss RF, Zhang YP, Baccini A, Birch T, Hahn N, Joppa LN, Wikramanayake E (2019) A Global Deal for Nature: guiding principles, milestones, and targets. Sci Adv 5:eaaw2869. https://doi.org/10.1126/sciadv.aaw2869
Einzmann HJR (2017) and Gerhard Zotz. ‘Dispersal and Establishment of Vascular Epiphytes in Human-Modified Landscapes’. Edited by Xiangcheng Mi. AoB PLANTS 9 (6). https://doi.org/10.1093/aobpla/plx052
Escalante T, Morrone JJ, Rodríguez-Tapia G (2013) Biogeographic regions of north american mammals based on endemism: biogeographical regionalisation of North America. Biol J Linn Soc 110:485–499. https://doi.org/10.1111/bij.12142
Flores-Palacios A, García-Franco JG (2006) The relationship between tree size and epiphyte species richness: testing four different hypotheses. J Biogeogr 33:323–330. https://doi.org/10.1111/j.1365-2699.2005.01382.x
Flores-Palacios A, Valencia-Diaz (2007) Epiphytes’ Biol Conserv 136(3):372–387. https://doi.org/10.1016/j.biocon.2006.12.017. ‘Local Illegal Trade Reveals Unknown Diversity and Involves a High Species Richness of Wild Vascular
Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci Rev 55:73–106. https://doi.org/10.1016/S0012-8252(01)00056-3
Freiberg M, Winter M, Gentile A, Zizka A, Muellner-Riehl AN, Weigelt A, Wirth C (2020) LCVP, the Leipzig catalogue of vascular plants, a new taxonomic reference list for all known vascular plants. Sci Data 7:416. https://doi.org/10.1038/s41597-020-00702-z
Freitas L, Salino A, Neto LM, Almeida TE, Mortara SR, Stehmann JR, Amorim AM, Guimarães EF, Coelho MN, Zanin A, Forzza RC (2016) A comprehensive checklist of vascular epiphytes of the Atlantic Forest reveals outstanding endemic rates. PhytoKeys 58:65–79. https://doi.org/10.3897/phytokeys.58.5643
Frenzke L, Scheiris E, Pino G, Symmank L, Goetghebeur P, Neinhuis C, Wanke S, Samain MS (2015) A revised infrageneric classification of the genus Peperomia. (Piperaceae) Taxon 64:424–444. https://doi.org/10.12705/643.4
García N, Galeano G (2006) Libro rojo de plantas de Colombia. Volumen 3: Las bromelias, las labiadas y las pasifloras. Instituto Alexander von Humboldt, vol 3. Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, Ministerio de Ambiente, Vivienda y Desarrollo Territorial., Bogotá, Colombia
GBIF (2022) GBIF occurrence download for Araceae, Orchidaceae, Piperaceae, Polypodiaceae. https://doi.org/10.15468/DL.AGYDNR
Gentry A, Dodson C (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann Mo Bot Gard 74:205–233
Givnish TJ, Barfuss MHJ, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Am J Bot 98:872–895. https://doi.org/10.3732/ajb.1000059
Givnish TJ, Barfuss MHJ, Ee BV, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ (2014) Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol Phylogenet Evol 71:55–78. https://doi.org/10.1016/j.ympev.2013.10.010
Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Iles WJD, Clements MA, Arroyo MTK, Leebens-Mack J, Endara L, Kriebel R, Neubig KM, Whitten WM, Williams NH, Cameron KM (2015) Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proceedings of the Royal Society B. 282, 20151553. https://doi.org/10.1098/rspb.2015.1553
Global Forest Watch (2014) World Resources Institute [WWW Document]. http://www.globalforestwatch.org
Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A (2021) The World checklist of vascular plants, a continuously updated resource for exploring global plant diversity. Sci Data 8:215. https://doi.org/10.1038/s41597-021-00997-6
Griffiths H, Smith JAC (1983) Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM. Oecologia 60:176–184. https://doi.org/10.1007/BF00379519
Guzmán-Jacob V, Zotz G, Craven D, Taylor A, Krömer T, Monge-González ML, Kreft H (2020) Effects of forest-use intensity on vascular epiphyte diversity along an elevational gradient. Divers Distrib 26:4–15. https://doi.org/10.1111/ddi.12992
Guzmán-Jacob V, Weigelt P, Craven D, Zotz G, Krömer T, Kreft H (2021) Biovera-Epi: a new database on species diversity, community composition and leaf functional traits of vascular epiphytes along gradients of elevation and forest-use intensity in Mexico. Biodivers Data J 9:e71974. https://doi.org/10.3897/BDJ.9.e71974
Hietz P (2011) Ecology and ecophysiology of epiphytes in tropical montane cloud forests. In: Bruijnzeel L, Scatena F, Hamilton L (eds) Tropical montane cloud forests: Science for Conservation and Management. Doi:10.1017/CBO9780511778384.007, International Hydrology. Cambridge University Press, Cambridge, pp 67–76
Hinsley A, Roberts DL (2018) The wild origin dilemma. Biol Conserv 217:203–206. https://doi.org/10.1016/j.biocon.2017.11.011
Hinsley A, Lee TE, Harrison JR, Roberts DL (2016) Estimating the extent and structure of trade in horticultural orchids via social media: Social-Media Orchid-Trade Networks. Conserv Biol 30:1038–1047. https://doi.org/10.1111/cobi.12721
Hinsley A, Nuno A, Ridout M, John FAVS, Roberts DL (2017) Estimating the extent of CITES noncompliance among traders and end-consumers; lessons from the global orchid trade: CITES noncompliance among end-consumers. Conserv Lett 10:602–609. https://doi.org/10.1111/conl.12316
Hossain MM (2011) Therapeutic orchids: traditional uses and recent advances — an overview. Fitoterapia 82:102–140. https://doi.org/10.1016/j.fitote.2010.09.007
IPBES (2018) ‘The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas’. Zenodo. https://doi.org/10.5281/ZENODO.3236252
IUCN (2021) Rredlist. The IUCN Red List is a global list of threatened and endangered species. http://apiv3.iucnredlist.org/api/v3/docs (accessed 2.21.22).
IUCN (2022a) The IUCN Red List of threatened species. https://www.iucnredlist.org (accessed 2.21.22).
IUCN (2022b) Guidelines for using the IUCN Red List categories and criteria. Version 15. Prepared by the Standards and Petitions Committee. IUCN Standards and Petitions Committee
Jacquemyn H, Brys R, Waud M, Busschaert P, Lievens B (2015) Mycorrhizal networks and coexistence in species-rich orchid communities. New Phytol 206:1127–1134. https://doi.org/10.1111/nph.13281
Jiménez-López DA, Pérez-García EA, Martínez-Meléndez N, Solano R (2019a) Orquídeas silvestres comercializadas en un mercado tradicional de Chiapas, México. Bot Sci 97:691–700. https://doi.org/10.17129/botsci.2209
Jiménez-López DA, Solano R, Peralta-Carreta C, Solórzano JV, Chávez-Ángeles MG (2019b) Species richness may determine the income from illicit wild orchid trading in traditional markets in Mexico. Econ Bot 73:171–186. https://doi.org/10.1007/s12231-019-09460-5
Jiménez-López DA, Solórzano JV, Vibrans H, Espejo-Serna A, Peralta-Carreta C (2019c) Ceremonial use of bromeliads and other vascular epiphytes in cemeteries of two indigenous communities of Las margaritas, Chiapas, Mexico. Econ Bot 73:127–132. https://doi.org/10.1007/s12231-019-09445-4
Jiménez-López DA, Carmona-Higuita MJ, Mendieta-Leiva G, Martínez-Camilo R, Espejo-Serna A, Krömer T, Martínez-Meléndez N, Ramírez-Marcial N (2023a) Linking different resources to recognize vascular epiphyte richness and distribution in a mountain system in southeastern Mexico. Flora 152261. https://doi.org/10.1016/j.flora.2023.152261
Jiménez-López DA, Gallardo-Cruz JA, Véliz ME, Martínez-Camilo R, Méndez C, Solórzano JV, Velázquez-Méndez L, Carabias J, García-Hidalgo G, Peralta-Carreta C, Sánchez-González M, Castillo-Acosta O, Luna-Kamyshev NM, Villaseñor JL, Meave JA (2023b) High vascular plant species richness in the Usumacinta River Basin: a comprehensive floristic checklist for a natural region in the mesoamerican biodiversity hotspot. Bot Sci 101:1–62. https://doi.org/10.17129/botsci.3253
Jimeno-Sevilla HD, Vergara-Rodríguez D, Krömer T, Armenta-Montero S, Mathieu G (2018) Five endemic Peperomia (Piperaceae) novelties from Veracruz. Mexico Phytotaxa 369:93–106. https://doi.org/10.11646/phytotaxa.369.2.3
Jost L (2004) Explosive local radiation of the genus Teagueia (Orchidaceae) in the upper pastaza watershed of Ecuador. Lyonia 7:41–47
Karremans AP (2016) Genera Pleurothallidinarum: an updated phylogenetic overview of Pleurothallidinae. Lankesteriana 16:219–241
Karremans AP (2021) With great biodiversity comes great responsibility: the underestimated diversity of Epidendrum (Orchidaceae). Harvard Papers in Botany 26. https://doi.org/10.3100/hpib.v26iss2.2021.n1
Kessler M (2002a) Range size and its ecological correlates among the Pteridophytes of Carrasco National Park, Bolivia. Glob Ecol Biogeogr 11:89–102
Kessler M (2002b) The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. J Biogeogr 29:1159–1165
Kessler M (2010) Biogeography of ferns, in: Fern Ecology. Edited by Klaus Mehltreter, Lawrence R. Walker, Joanne M. Sharpe. Cambridge University Press, pp. 22–60
Knight J (2022) Scientists’ warning of the impacts of climate change on mountains. PeerJ 10:e14253. https://doi.org/10.7717/peerj.14253
Köster N, Friedrich K, Nieder J, Barthlott W (2009) Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conserv Biol 23:911–919. https://doi.org/10.1111/j.1523-1739.2008.01164.x
Krömer T, Kessler M, Gradstein SR, Acebey A (2005) Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. J Biogeogr 32:1799–1809. https://doi.org/10.1111/j.1365-2699.2005.01318.x
Krömer T, Kessler M, Gradstein SR (2007) Vertical stratification of vascular epiphytes in submontane and montane forest of the bolivian Andes: the importance of the understory. Plant Ecol 189:261–278. https://doi.org/10.1007/s11258-006-9182-8
Krömer T, Acebey AR, Smith AR (2013) Taxonomic update, distribution and conservation status of grammitid ferns (Polypodiaceae, Polypodiopsida) in Veracruz State. Mexico Phytotaxa 82:29–44. https://doi.org/10.11646/phytotaxa.82.1.3
Krömer T, Acebey AR, Toledo-Aceves T (2018) Aprovechamiento de plantas epífitas: implicaciones para su conservación y manejo sustentable, in: E. Silva-Rivera, V. Martínez-Valdéz, M. Lascuráin y E. Rodríguez-Luna (Eds.). De la recolección a los agroecosistemas: soberanía alimentaria y conservación de la biodiversidad. Editorial de la Universidad Veracruzana, Xalapa, México, pp. 175–196
Krömer T, Acebey AR, Armenta-Montero S, Croat TB (2019) Diversity, distribution, and conservation status of Araceae in the state of Veracruz, Mexico. Ann Mo Bot Gard 104:10–32. https://doi.org/10.3417/2018214
Krömer T, Viccon-Esquivel J, Gómez-Díaz JA (2021) Efectos antrópicos sobre la diversidad de epífitas vasculares y orquídeas en el centro de Veracruz. In: Viccon Esquivel J, Castañeda Zárate M, Castro R, Cortés, Cetzal Ix W (eds) Las Orquídeas de Veracruz. Editorial de La Universidad Veracruzana, Xalapa, Ver, pp 235–252
Maldonado C, Molina CI, Zizka A, Persson C, Taylor CM, Albán J, Chilquillo E, Rønsted N, Antonelli A (2015) Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases? Glob Ecol Biogeogr 24:973–984. https://doi.org/10.1111/geb.12326
Martinelli G, Vieira C, Gonzalez M, Vieira C, Leitman P, Piratininga A, Costa A, Forzza R (2008) Bromeliaceae da Mata Atlântica Brasileira: Lista de espécies, distribuição e conservação. Rodriguésia 59:209–258
Martínez-Meléndez N, Ramírez-Marcial N, García-Franco JG, Cach-Pérez MJ, Martínez-Zurimendi P (2022) Importance of Quercus spp. for diversity and biomass of vascular epiphytes in a managed pine-oak forest in Southern Mexico. For Ecosyst 9:100034. https://doi.org/10.1016/j.fecs.2022.100034
Mathieu G (2007) Compendium of herbarium names in the genus Peperomia (Piperaceae). Nautilus Acad. Books, Zelzate
Mathieu G 2001–2020. The internet Peperomia reference. http://www.peperomia.net
Mathieu G, Vergara-Rodriguez D, Krömer T, Karger DN (2015) Peperomia (Piperaceae) novelties from Veracruz State. Mexico Phytotaxa 205:268–276. https://doi.org/10.11646/phytotaxa.205.4.6
Mayo SJ, Bogner J, Boyce PC (1997) The genera of Araceae. Kew, Royal botanic gardens
Mendieta-Leiva G, Ramos FN, Elias JPC, Zotz G, Acuña-Tarazona M, Alvim FS, Barbosa DEF, Basílio GA, Batke SP, Benavides AM, Blum CT, Boelter CR, Brancalion PHS, Carmona MJ, Carvalho LP, de la Rosa-Manzano E, Einzmann HJR, Fernández M, Furtado SG, de Gasper AL, Guzmán-Jacob V, Hietz P, Irume MV, Jiménez-López DA, Kessler M, Kreft H, Krömer T, Machado GMO, Martínez-Meléndez N, Martins PLSS, Mello R, de Mendes M, Neto A.F., Menini, Mortara L, Nardy SR, Oliveira C, de Ana R, Pillaca AC, Quaresma L, Rodríguez AC, Quiel C, Medina S, Taylor E, Vega A, Wagner MS, Werneck K, Werner MS, Wolf FA, Zartman JHD, Zuleta CE, Jiménez-Alfaro D, B (2020) EpIG-DB: a database of vascular epiphyte assemblages in the Neotropics. J Veg Sci 31:1–11. https://doi.org/10.1111/jvs.12867
Miller JS, Porter-Morgan HA, Stevens H, Boom B, Krupnick GA, Acevedo-Rodríguez P, Fleming J, Gensler M (2012) Addressing target two of the global strategy for Plant Conservation by rapidly identifying plants at risk. Biodivers Conserv 21:1877–1887. https://doi.org/10.1007/s10531-012-0285-3
Millner HJ, Bachman SP, Baldwin TC (2020) An assessment of the conservation status of Restrepia (Orchidaceae) reveals the threatened status of the genus. Plant Ecol Divers 13:115–131. https://doi.org/10.1080/17550874.2020.1735553
Mittermeier RA, Myers N, Mittermeier CG, Robles Gil P (1999) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, SA, Agrupacion Sierra Madre, SC
Moffett MW (2000) What’s up? A critical look at the basic terms of canopy biology. Biotropica 34:569–596. https://doi.org/10.1646/0006-3606(2000)032[0569:WSUACL]2.0.CO;2
Mondragón D, Valverde T, Hernández-Apolinar M (2015) Popul Ecol Epiphytic Angiosperms: Rev 56(1):1–39
Morrone JJ (2014) Biogeographical regionalisation of the neotropical region. Zootaxa 3782:110. https://doi.org/10.11646/zootaxa.3782.1.1
Morrone JJ, Escalante T, Rodríguez-Tapia G, Carmona A, Arana M, Mercado-Gómez JD (2022) Biogeographic regionalisation of the neotropical region: New map and shapefile. Anais da Academia Brasileira de Ciências 94:e20211167. https://doi.org/10.1590/0001-3765202220211167
Müller R, Nowicki C, Barthlott W, Ibisch PL (2003) Biodiversity and endemism mapping as a tool for regional conservation planning – case study of the Pleurothallidinae (Orchidaceae) of the andean rain forests in Bolivia. Biodivers Conserv 12:2005–2024. https://doi.org/10.1023/A:1024195412457
Myers N, Mittermeier R, Mittermeier C, da Fonseca G, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501
Nic Lughadha E, Walker BE, Canteiro C, Chadburn H, Davis AP, Hargreaves S, Lucas EJ, Schuiteman A, Williams E, Bachman SP, Baines D, Barker A, Budden AP, Carretero J, Clarkson JJ, Roberts A, Rivers MC (2019) The use and misuse of herbarium specimens in evaluating plant extinction risks. Philosophical Trans Royal Soc B: Biol Sci 374:20170402. https://doi.org/10.1098/rstb.2017.0402
Oliveira U, Soares-Filho BS, Paglia AP, Brescovit AD, de Carvalho CJB, Silva DP, Rezende DT, Leite FSF, Batista JAN, Barbosa JPPP, Stehmann JR, Ascher JS, de Vasconcelos MF, De Marco P, Löwenberg-Neto P, Ferro VG, Santos AJ (2017) Biodiversity conservation gaps in the brazilian protected areas. Sci Rep 7:9141. https://doi.org/10.1038/s41598-017-08707-2
Parra-Sanchez E, Banks-Leite C (2020) The magnitude and extent of edge effects on vascular epiphytes across the brazilian Atlantic Forest. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-75970-1
Peck JH, Peck CJ, Farrar DR (1990) Influences of life history attributes on formation of local and distant fern populations. Am Fern J 80:126. https://doi.org/10.2307/1547200
Pelletier TA, Carstens BC, Tank DC, Sullivan J, Espíndola A (2018) Predicting plant conservation priorities on a global scale. Proceedings of the National Academy of Sciences 115, 13027–13032. https://doi.org/10.1073/pnas.1804098115
Perdue RT (2021) Who needs the dark web? Exploring the trade in critically endangered plants on eBay. Am J Criminal Justice 46:1006–1017. https://doi.org/10.1007/s12103-021-09658-1
Pérez-Escobar OA, Gottschling M, Chomicki G, Condamine FL, Klitgård BB, Pansarin E, Gerlach G (2017) Andean mountain building did not preclude dispersal of lowland epiphytic orchids in the Neotropics. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-04261-z
Pérez-Escobar OA, Chomicki G, Condamine FL, Karremans AP, Bogarín D, Matzke NJ, Silvestro D, Antonelli A (2017a) Recent origin and rapid speciation of neotropical orchids in the world’s richest plant biodiversity hotspot. New Phytol 215:891–905. https://doi.org/10.1111/nph.14629
QGIS.org, (2022) Quantum GIS Development Team
Ramos, F.N., Mortara, S.R., Monalisa-Francisco, N., Elias, J.P.C., Neto, L.M., Freitas, L., Kersten, R., Amorim, A.M.,Matos, F.B., Nunes‐Freitas, A.F., Alcantara, S., Alexandre, M.H.N., Almeida‐Scabbia, R.J., Almeida, O.J.G., Alves, F.E., Oliveira Alves, R.M., Alvim, F.S., Andrade,A.C.S., Andrade, S., Aona, L.Y.S., Araujo, A.C., Araújo, K.C.T., Ariati, V., Assis,J.C., Azevedo, C.O., Barbosa, B.F., Barbosa, D.E.F., Barbosa, F. dos R., Barros, F.,Basilio, G.A., Bataghin, F.A., Bered, F., Bianchi, J.S., Blum, C.T., Boelter, C.R.,Bonnet, A., Brancalion, P.H.S., Breier, T.B., Brion, C. de T., Buzatto, C.R., Cabral,A., Cadorin, T.J., Caglioni, E., Canêz, L., Cardoso, P.H., Carvalho, F.S., Carvalho,R.G., Catharino, E.L.M., Ceballos, S.J., Cerezini, M.T., César, R.G., Cestari, C.,Chaves, C.J.N., Citadini‐Zanette, V., Coelho, L.F.M., Coffani‐Nunes, J.V., Colares, R., Colletta, G.D., Corrêa, N. de M., Costa, A.F., Costa, G.M.,Costa, L.M.S., Costa, N.G.S., Couto, D.R., Cristofolini, C., Cruz, A.C.R., Del Neri,L.A., Pasquo, M., Santos Dias, A., Dias, L. do C.D., Dislich, R., Duarte, M.C., Fabricante,J.R., Farache, F.H.A., Faria, A.P.G., Faxina, C., Ferreira, M.T.M., Fischer, E., Fonseca,C.R., Fontoura, T., Francisco, T.M., Furtado, S.G., Galetti, M., Garbin, M.L., Gasper,A.L., Goetze, M., Gomes‐da‐Silva, J., Gonçalves, M.F.A., Gonzaga, D.R., Silva, A.C.G. e, Guaraldo, A. de C.,Guarino, E. de S.G., Guislon, A.V., Hudson, L.B., Jardim, J.G., Jungbluth, P., Kaeser,S. dos S., Kessous, I.M., Koch, N.M., Kuniyoshi, Y.S., Labiak, P.H., Lapate, M.E.,Santos, A.C.L., Leal, R.L.B., Leite, F.S., Leitman, P., Liboni, A.P., Liebsch, D.,Lingner, D.V., Lombardi, J.A., Lucas, E., Luzzi, J. dos R., Mai, P., Mania, L.F.,Mantovani, W., Maragni, A.G., Marques, M.C.M., Marquez, G., Martins, C., Martins,L. do N., Martins, P.L.S.S., Mazziero, F.F.F., Melo, C. de A., Melo, M.M.F., Mendes,A.F., Mesacasa, L., Morellato, L.P.C., Moreno, V. de S., Muller, A., Murakami, M.M.da S., Cecconello, E., Nardy, C., Nervo, M.H., Neves, B., Nogueira, M.G.C., Nonato,F.R., Oliveira‐Filho, A.T., Oliveira, C.P.L., Overbeck, G.E., Marcusso, G.M., Paciencia, M.L.B.,Padilha, P., Padilha, P.T., Pereira, A.C.A., Pereira, L.C., Pereira, R.A.S., Pincheira‐Ulbrich, J., Pires, J.S.R., Pizo, M.A., Pôrto, K.C., Rattis, L., Reis, J.R. de M.,Reis, S.G. dos, Rocha‐Pessôa, T.C., Rocha, C.F.D., Rocha, F.S., Rodrigues, A.R.P., Rodrigues, R.R., Rogalski,J.M., Rosanelli, R.L., Rossado, A., Rossatto, D.R., Rother, D.C., Ruiz‐Miranda, C.R., Saiter, F.Z., Sampaio, M.B., Santana, L.D., Santos, J.S. dos, Sartorello,R., Sazima, M., Schmitt, J.L., Schneider, G., Schroeder, B.G., Sevegnani, L., Júnior,V.O.S., Silva, F.R., Silva, M.J., Silva, M.P.P., Silva, R.G., Silva, S.M., Singer,R.B., Siqueira, G., Soares, L.E., Sousa, H.C., Spielmann, A., Tonetti, V.R., Toniato,M.T.Z., Ulguim, P.S.B., Berg, C., Berg, E., Varassin, I.G., Silva, I.B.V., Vibrans,A.C., Waechter, J.L., Weissenberg, E.W., Windisch, P.G., Wolowski, M., Yañez, A.,Yoshikawa, V.N., Zandoná, L.R., Zanella, C.M., Zanin, E.M., Zappi, D.C., Zipparro,V.B., Zorzanelli, J.P.F., Ribeiro, M.C., 2019. ATLANTIC EPIPHYTES: a data set of vascular and non‐vascular epiphyte plants and lichens from the Atlantic Forest. Ecology 100, e02541.https://doi.org/10.1002/ecy.2541
Ramos FN, Mortara SR, Elias JPC (2021) Vascular epiphytes of the Atlantic Forest: diversity and community ecology. In: Marques MCM, Grelle CEV (eds) The Atlantic Forest. Springer International Publishing, Cham, pp 133–149. https://doi.org/10.1007/978-3-030-55322-7_7
Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous lifestyle. Oikos 118:334–345. https://doi.org/10.1111/j.1600-0706.2008.17116.x
Raven PH, Gereau RE, Phillipson PB, Chatelain C, Jenkins CN, Ulloa U, C (2020) The distribution of biodiversity richness in the tropics. Sci Adv 6:eabc6228. https://doi.org/10.1126/sciadv.abc6228
Reimuth J, Zotz G (2020) The biogeography of the megadiverse genus Anthurium (Araceae). Bot J Linn Soc 194:164–176. https://doi.org/10.1093/botlinnean/boaa044
Ribeiro BR, Velazco SJE, Guidoni-Martins K, Tessarolo G, Jardim L, Bachman SP, Loyola R (2022) Bdc: a toolkit for standardising, integrating and cleaning biodiversity data. Methods Ecol Evol 13:1421–1428. https://doi.org/10.1111/2041-210X.13868
Richardson BA, Rogers C, Richardson MJ (2000) Nutrients, diversity, and community structure of two phytotelm systems in a lower montane forest, Puerto Rico: nutrients and phytotelm community structure. Ecol Entomol 25:348–356. https://doi.org/10.1046/j.1365-2311.2000.00255.x
Rivers MC, Taylor L, Brummitt NA, Meagher TR, Roberts DL, Nic Lughadha E (2011) How many herbarium specimens are needed to detect threatened species? Biol Conserv 144:2541–2547. https://doi.org/10.1016/j.biocon.2011.07.014
Rodrigues ASL, Sandy J, Andelman, Mohamed I, Bakarr L, Boitani TM, Brooks RM, Cowling, Lincoln DC, Fishpool et al (2004) Effectiveness of the global protected Area Network in representing species diversity. Nature 428(6983):640–643. https://doi.org/10.1038/nature02422
Rondinini C, Di Marco M, Visconti P, Butchart SH, Boitani L (2014) Update or outdate: long-term viability of the IUCN Red List. Conserv Lett 7:126–130. https://doi.org/10.1111/conl.12040
Schoener TW, Spiller DA (1987) High population persistence in a system with high turnover. Nature 330:474–477. https://doi.org/10.1038/330474a0
Smith AR (1972) Comparison of fern and flowering plant distributions with some evolutionary interpretations for ferns. Biotropica 4:4–9. https://doi.org/10.2307/2989639
Solano R, Cruz G, Martínez A, Lagunez L (2010) Plantas utilizadas en la celebración de la Semana Santa en Zaachila, Oaxaca, México. Polibotánica 29
Soria-Auza RW, Kessler M (2008) The influence of sampling intensity on the perception of the spatial distribution of tropical diversity and endemism: a case study of ferns from Bolivia: influence of sampling intensity on patterns of tropical diversity. Divers Distrib 14:123–130. https://doi.org/10.1111/j.1472-4642.2007.00433.x
Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256
Stuntz S, Ziegler C, Simon U, Zotz G (2002) Diversity and structure of the arthropod fauna within three canopy epiphyte species in central Panama. J Trop Ecol 18:161–176. https://doi.org/10.1017/S0266467402002110
Tabarelli M, Pinto LP, Silva JMC, Hirota M, Bede L (2005) Challenges and opportunities for biodiversity conservation in the brazilian Atlantic Forest. Conserv Biol 19:695–700. https://doi.org/10.1111/j.1523-1739.2005.00694.x
Taylor A, Zotz G, Weigelt P, Cai L, Karger DN, König C, Kreft H (2021) Vascular epiphytes contribute disproportionately to global centers of plant diversity. Glob Ecol Biogeogr 31:62–74. https://doi.org/10.1111/geb.13411
Thomas BA (2006) Slippers, thieves and smugglers — dealing with the illegal international trade in orchids. Environ Law Rev 8:85–92. https://doi.org/10.1350/enlr.2006.8.2.85
Thomsen MS, Altieri AH, Angelini C, Bishop MJ, Gribben PE, Lear G, He Q, Schiel DR, Silliman BR, South PM, Watson DM, Wernberg T, Zotz G (2018) Secondary foundation species enhance biodiversity. Nat Ecol Evol 2:634–639. https://doi.org/10.1038/s41559-018-0487-5
Ticktin T, Mondragón D, Lopez-Toledo L, Dutra‐Elliott D, Aguirre‐León E, Hernández‐Apolinar M (2020) Synthesis of wild orchid trade and demography provides new insight on conservation strategies. Conserv Lett 13:e12697. https://doi.org/10.1111/conl.12697
UNEP-WCMC (2022) Protected areas map of the world, March 2022. www.protectedplanet.net (accessed 3.11.22)
Vergara-Rodríguez D, Mathieu G, Samain MS, Armenta-Montero S, Krömer T (2017) Diversity, distribution, and conservation status of Peperomia (Piperaceae) in the state of Veracruz, Mexico. Trop Conserv Sci 10:1–28. https://doi.org/10.1177/1940082917702383
Werner FA, Köster N, Kessler M, Gradstein SR (2011) Is the resilience of epiphyte assemblage to human disturbance a function of local climate? Ecotropica 17, 15–20. https://doi.org/10.5167/UZH-76892
Williams SE, Williams YM, VanDerWal J, Isaac JL, Shoo LP, Johnson CN (2009) Ecological specialisation and population size in a biodiversity hotspot: How rare species avoid extinction. Proceedings of the National Academy of Sciences 106, 19737–19741. https://doi.org/10.1073/pnas.0901640106
Wraith J, Pickering C (2018) Quantifying anthropogenic threats to Orchids using the IUCN Red List. Ambio 47(3):307–317. https://doi.org/10.1007/s13280-017-0964-0
Zizka A (2019) Big data suggest migration and bioregion connectivity as crucial for the evolution of neotropical biodiversity. Front Biogeogr 11. https://doi.org/10.21425/F5FBG40617
Zizka A, Silvestro D, Andermann T, Azevedo J, Duarte Ritter C, Edler D, Farooq H, Herdean A, Ariza M, Scharn R, Svantesson S, Wengström N, Zizka V, Antonelli A (2018) CoordinateCleaner: standardised cleaning of occurrence records from biological collection databases. Methods Ecol Evol 10:744–751. https://doi.org/10.1111/2041-210X.13152
Zizka A, Antunes Carvalho F, Calvente A, Rocio Baez-Lizarazo M, Cabral A, Coelho JFR, Colli-Silva M, Fantinati MR, Fernandes MF, Ferreira-Araújo T, Lambert Moreira G, Santos F, Santos NMC, dos Santos-Costa TAB, Serrano RC, Alves FC, da Silva AP, de Souza Soares A, de Cavalcante PG, Tomaz C, Vale E, Vieira VF, Antonelli TL, A (2020a) No one-size-fits-all solution to clean GBIF. PeerJ 8:e9916. https://doi.org/10.7717/peerj.9916
Zizka A, Azevedo J, Leme E, Neves B, da Costa AF, Caceres D, Zizka G (2020b) Biogeography and conservation status of the pineapple family (Bromeliaceae). Divers Distrib 26:183–195. https://doi.org/10.1111/ddi.13004
Zizka A, Silvestro D, Vitt P, Knight TM (2021) Automated conservation assessment of the orchid family with deep learning. Conserv Biol 35:897–908. https://doi.org/10.1111/cobi.13616
Zotz G (2013) Hemiepiphyte’: a confusing term and its history. Ann Botany 111:1015–1020
Zotz G (2016) Plants on plants – the biology of vascular epiphytes, fascinating Life Sciences. Springer, Switzerland
Zotz G, Bader MY (2009) Epiphytic plants in a changing world-global: change effects on vascular and non-vascular epiphytes. Progress in Botany 70:147–170. https://doi.org/10.1007/978-3-540-68421-3_7
Zotz G, Bogusch W, Hietz P, Ketteler N (2010) Growth of epiphytic bromeliads in a changing world: the effects of CO2, water and nutrient supply. Acta Oecol 36:659–665. https://doi.org/10.1016/j.actao.2010.10.003
Zotz G, Weigelt P, Kessler M, Kreft H, Taylor A (2021b) EpiList 1.0: a global checklist of vascular epiphytes. Ecology 102:e03326. https://doi.org/10.1002/ecy.3326
Zuleta D, Benavides AM, López-Rios V, Duque A (2016) Local and regional determinants of vascular epiphyte mortality in the Andean mountains of Colombia. J Ecol 104:841–849