Conservation laws of a nonlinear wave equation

Nonlinear Analysis: Real World Applications - Tập 11 - Trang 2237-2242 - 2010
A.G. Johnpillai1, A.H. Kara2, F.M. Mahomed3
1Department of Mathematics, Eastern University, Sri Lanka
2School of Mathematics, Centre for Differential Equations, Continuum Mechanics and Applications, University of the Witwatersrand, Wits 2050, South Africa
3School of Computational and Applied Mathematics, Centre for Differential Equations, Continuum Mechanics and Applications, University of the Witwatersrand, Wits 2050, South Africa

Tài liệu tham khảo

Ovsiannikov, 1982 Ibragimov, 1983 Bluman, 1989 Olver, 1993 Ibragimov, 1994, vol. 1 Noether, 1918, Invariante variationsprobleme, Nachr. König. Gesell. Wissen., Göttingen, Math. Phys. Kl. Heft, 2, 235 Bessel-Hagen, 1921, Über die Erhaltungssätze der Elektrodynamik, Math. Anna., 84, 258, 10.1007/BF01459410 Khalique, 2005, Conservation laws for equations related to soil water equations, Math. Probl. Eng., 26, 141, 10.1155/MPE.2005.141 Khalique, 2009, Soil water redistribution and extraction flow models: Conservation laws, Nonlinear Anal. RWA, 10, 2021, 10.1016/j.nonrwa.2008.03.008 Anco, 2002, Direct construction method for conservation laws of partial differential equations, Part II: General treatment, European. J. Appl. Math., 9, 567 Ibragimov, 2004, Lagrangian approach to evolution equations: Symmetries and conservation laws, Nonlinear Dynam., 36, 29, 10.1023/B:NODY.0000034644.82259.1f Kara, 2000, Relationship between symmetries and conservation laws, Internat. J. Theoret. Phys., 39, 23, 10.1023/A:1003686831523 Kara, 2002, A basis of conservation laws for partial differential equations, J. Nonlinear Math. Phys., 9, 60, 10.2991/jnmp.2002.9.s2.6 Kara, 2006, Noether-type symmetries and conservation laws via partial Lagrangians, Nonlinear Dynam., 45, 367, 10.1007/s11071-005-9013-9 Ibragimov, 1998, Lie–Bäcklund and Noether symmetries with applications, Nonlinear Dynam., 15, 115, 10.1023/A:1008240112483