Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các luật bảo tồn cho các lớp phương trình tiến hóa phi tuyến có thể giải bằng biến đổi phổ
Tóm tắt
Sự tồn tại của các luật bảo tồn cho các lớp phương trình tiến hóa phi tuyến mới (với các hệ số phụ thuộc tuyến tính vào x) có thể giải quyết bằng biến đổi phổ được điều tra. Hơn nữa, một biểu diễn rõ ràng một cách đáng kể cũng được thu được cho các đại lượng được bảo tồn của các lớp "cũ" của các phương trình tiến hóa phi tuyến (với các hệ số không phụ thuộc vào x; bao gồm phương trình Korteweg-de Vries, phương trình Korteweg-de Vries đã sửa đổi, phương trình Schrödinger phi tuyến, v.v.).
Từ khóa
Tài liệu tham khảo
Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Kortewegde Vries equation. Phys. Rev. Letters19, 1095–1097 (1967)
Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Korteweg-de Vries equation and generalizations. VI. Methods for exact solution. Comm. Pure Appl. Math.27, 97–133 (1974)
Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math.21, 467–490 (1968)
Gardner, C.S.: Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equation as a Hamiltonian system. J. Math. Phys.12, 1548–1551 (1971)
Zakharov, V.E., Faddeev, L.D.: The Korteweg-de Vries equation: a completely integrable Hamiltonian system. Funct. Anal. Appl.5, 280–287 (1971)
Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Phys. JETP34, 62–69 (1972) [Zh. Eksp Teor. Fiz.61, 118 (1971)]
Scott, A.C., Chu, F.Y.F., McLaughlin, D.W.: The soliton: a new concept in applied science. Proc. I.E.E.E.61, 1443–1483 (1973)
Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Studies Appl. Math.53, 249–315 (1974)
Newell, A.C. (ed.): Nonlinear wave motion. Lectures in applied mathematics, Vol. 15. Providence, RI: AMS 1974
Moser, J. (ed.): Dynamical systems, theory and applications. Lectures notes physics, Vol. 38. Berlin, Heidelberg, New York: Springer 1975; (see in particular the paper by Kruskal and by Flaschka and Newell)
Miura, R.M. (ed.): Bäcklund transformations, the inverse scattering method, solitons, and their applications. Lecture notes mathematics, Vol. 515. Berlin, Heidelberg, New York: Springer 1976
Flaschka, H., McLaughlin, D.W. (eds.): Proceedings of the conference on the theory and applications of solitons. Rocky Mountain Mathematics Consortium (Arizona State University), Tempe (1978)
Calogero, F., Degasperis, A.: Nonlinear evolution equations solvable by the inverse spectral transform. I, II. Nuovo Cimento32B, 201–242 (1976),39B, 1–54 (1977)
Case, K.M., Chiu, S.C.: Some remarks on the wronskian technique and the inverse scattering transform. J. Math. Phys.18, 2044–2052 (1977)
Magri, F.: Equivalence transformations for nonlinear evolution equations. J. Math. Phys.18, 1405–1411 (1977)
Lamb, G.L., Jr.: Solitons on moving space curves. J. Math. Phys.18, 1654–1661 (1977)
Gel'fand, I.M., Dikii, L.A.: Asymptotic behavior of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations. Russ. Math. Surv.30, 77–113 (1975). [Usp. Mat. Nauk30, 67–100 (1975)]
Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Nonlinear equations of Korteweg-de Vries type, finite-zone linear operators and Abelian varieties. Russ. Math. Surv.31, 59–146 (1976). [Usp. Mat. Nauk31, 55–136 (1976)]
Lax, P.D.: Almost periodic solutions of the KdV equation. SIAM Rev.18, 351–375 (1976)
Calogero, F. (ed.): Nonlinear evolution equations solvable by the spectral transform. London: Pitman 1978
Miura, R.M., Gardner, C.S., Kruskal, M.D.: Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys.9, 1204–1209 (1968)
Wadati, M., Sanuki, H., Konno, K.: Relationship among inverse method, Bäcklund transformation and an infinite number of conservation laws. Prog. Theor. Phys.53, 419–436 (1975)
Flaschka, H., McLaughlin, D.W.: Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Prog. Theor. Phys.55, 438–456 (1976)
Kumei, S.: Group theoretic aspects of conservation laws of nonlinear dispersive waves: KdV type equations and nonlinear Schrödinger equations. J. Math. Phys.18, 256–264 (1977)
Alber, S.I.: Investigation of equations of Korteweg-de Vries type by recurrence relations techniques. Proc. London Math. Soc. (to be published)
Haberman, R.: An infinite number of conservation laws for coupled nonlinear evolution equations. J. Math. Phys.18, 1137–1139 (1977)
Olver, P.J.: Evolution equations possessing infinitely many symmetries. J. Math. Phys.18, 1212–1215 (1977)
Adler, M.: Some algebraic relations common to a set of integrable partial and ordinary differential equations. Preprint, University of Wisconsin (to be published)
Calogero, F., Degasperis, A.: Extension of the spectral transform method for solving nonlinear evolution equations. I, II. Lett. Nuovo Cimento22, 131–137, 263–269 (1978)
Calogero, F., Degasperis, A.: Exact solution via the spectral transform of a nonlinear evolution equation with linearlyx-dependent coefficients. Lett. Nuovo Cimento22, 138–141 (1978)
Calogero, F., Degasperis, A.: Exact solution via the spectral transform of a generalization with linearlyx-dependent coefficients of the modified Korteweg-de Vries equation. Lett. Nuovo Cimento22, 270–273 (1978)
Calogero, F., Degasperis, A.: Exact solution via the spectral transform of a generalization with linearlyx-dependent coefficients of the nonlinear Schrödinger equation. Lett. Nuovo Cimento22, 420–424 (1978)
Hirota, R., Satsuma, J.:N-soliton solution of the KdV equation with loss and nonuniformity terms. J. Phys. Soc. Japan41, 2141–2142 (1976)
Newell, A.: Near integrable systems, nonlinear tunnelling and solitons in slowly changing media. In: Proceedings of a Symposium held at the Academic dei Lincei, Rome (June 1977), Ref. 20 above (see in particular Section 3 of this paper)
Newell, A.: The general structure of integrable evolution equations. Proc. Roy. Soc. (to appear) (1978)