Conservation by trans-border cooperation: population genetic structure and diversity of geoffroy’s bat (Myotis emarginatus) at its north-western european range edge

Biodiversity and Conservation - Tập 31 - Trang 925-948 - 2022
Alain C. Frantz1, Andrea Viglino2, Elodie Wilwert1, Ana-Paula Cruz1, Julian Wittische1,3, Alexander M. Weigand1, Jacky Buijk1, Pierrette Nyssen4, Daan Dekeukeleire5, Jasja J.A. Dekker6, Gavin J. Horsburgh7, Simone Schneider1,8, Mara Lang8, Romolo Caniglia9, Marco Galaverni10, Anna Schleimer1, Szilárd-Lehel Bücs11, Jacques B. Pir1
1Musée National d‘Histoire Naturelle, Luxembourg, Luxembourg
2University of Bologna, Bologna, Italy
3Fondation Faune-Flore, Luxembourg, Luxembourg
4Natagora, Namur, Belgium
5Terrestrial Ecology Unit, University of Ghent, Ghent, Belgium
6Jasja Dekker Dierecologie, Arnhem, The Netherlands
7NERC Biomolecular Analysis Facility, University of Sheffield, Sheffield, UK
8Nature conservation syndicate SICONA, Olm, Luxembourg
9Unit for Conservation Genetics, Italian Institute for Environmental Protection and Research, Bologna, Italy
10Conservation Unit, WWF Italia, Rome, Italy
11Centre for Bat Research and Conservation, Cluj-Napoca, Romania

Tóm tắt

In the European Union, all bat species are strictly protected and member states must ensure their conservation. However, if populations are genetically structured, conservation units that correspond to whole countries may be too large, putting small populations with specific conservation requirements at risk. Geoffroy’s bat (Myotis emarginatus) has undergone well-documented declines at its north-western European range edge between the 1960 and 1990s and is considered to be negatively affected by habitat fragmentation. Here we analysed the species’ genetic population structure and diversity to identify subpopulations with reduced genetic diversity and to scientifically inform conservation management. We generated 811 microsatellite-based genetic profiles obtained from 42 European nursery colonies and analysed a total of 932 sequences of the hypervariable region II of the mitochondrial control region sampled from across Europe. While two geographically widespread genetic populations were inferred to be present in north-western Europe, both nuclear and mitochondrial genetic diversity were lowest in the areas that had experienced a decline during the last century. A microsatellite-based analysis of demographic history did not permit, however, to unequivocally link that reduced genetic diversity to the population contraction event. Given the large geographic extent of the genetic populations, preserving the connectivity of mating sites requires concerted conservation efforts across multiple political jurisdictions. Genetic monitoring ought to be done on a regular basis to ensure that large-scale connectivity is maintained and further loss of genetic diversity is prevented.

Tài liệu tham khảo

Angell RL, Butlin RK, Altringham JD (2013) Sexual segregation and flexible mating patterns in temperate bats. PLoS ONE 8:e54194. https://doi.org/10.1371/journal.pone.0054194 Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press Cambridge, MA Belkhir K (2004) 1996–2004 genetix 4.05, logiciel sous Windows TM pour la génétique des populations. https://kimura.univ-montp2.fr/genetix/. Accessed 15 June 2021 Bogdanowicz W, Hulva P, Černá Bolfíková B et al (2015) Cryptic diversity of Italian bats and the role of the Apennine refugium in the phylogeography of the western Palaearctic. Zool J Linnean Soc 174:635–648. https://doi.org/10.1111/zoj.12248 Boston ESM, Puechmaille SJ, Scott DD et al (2012) Empirical assessment of non-invasive population genetics in bats: comparison of DNA quality from faecal and tissue samples. Acta Chiropt 14:45–52. https://doi.org/10.3161/150811012X654259 Broquet T, Angelone S, Jaquiery J et al (2010) Genetic bottleneck driven by population disconnection. Conserv Biol 24:1596–1605 Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13:3601–3608. https://doi.org/10.1111/j.1365-294X.2004.02352.x Campbell S, Guay PJ, Mitrovski PJ, Mulder R (2009) Genetic differentiation among populations of a specialist fishing bat suggests lack of suitable habitat connectivity. Biol Conserv 142:2657–2664. https://doi.org/10.1016/j.biocon.2009.06.014 Castella V, Ruedi M (2000) Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Mol Ecol 9:1000–1002. https://doi.org/10.1046/j.1365-294x.2000.00939-6.x Castella V, Ruedi M, Excoffier L (2001) Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis. J Evol Biol 14:708–720. https://doi.org/10.1046/j.1420-9101.2001.00331.x Červený J (1999) Myotis emarginatus (E. Goeffroy, 1806). In: Mitchell-Jones AJ, Amori G, Bogdanowicz W, Kryštufek B, Reijnders PJH, Spitzenberger F, Stubbe M, Thissen JBM, Vohralík V, Zima J (eds) The atlas of European mammals. T & AD Poyser, London, pp 112–113 Corander J, Waldmann P, Marttinen P, Sillanpää MJ (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20:2363–2369. https://doi.org/10.1093/bioinformatics/bth250 Council of the European Communities (1992) Council Directive 92/43/EEC of 21. May 1992 on the conservation of natural habitats and of wild fauna and flora. OJEC 35:7–50 De Villemereuil P, Rutschmann A, Lee KD, Ewen JG, Brekke P, Santure AW (2019) Little adaptive potential in a threatened passerine bird. Curr Biol 29:889–894. https://doi.org/10.1016/j.cub.2019.01.072 Dekker JJA, Regelink JR, Jansen EA, Brinkmann R, Limpens HJGA (2013) Habitat use by female Geoffroy’s bats (Myotis emarginatus) at its two northernmost maternity roosts and the implications for their conservation. Lutra 56:111–120 Dietz M, Pir JB (2021) Geoffroy’s bat—Myotis emarginatus (Geoffroy, 1806). In: In: Hackländer K, Zachos FE (eds) Handbook of the Mammals of Europe. Springer Nature, Switzerland. https://doi.org/10.1007/978-3-319-65038-8 Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50. https://doi.org/10.1177/117693430500100003 Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 Fleming TH (2019) Bat migration. In: In: Choe JC (ed) Encyclopedia of animal behaviour. Elsevier Academic Press, Cambridge, MA, pp 605–610. https://doi.org/10.1016/B978-0-12-809633-8.20764-4 Frankham R, Ballou JD, Briscoe DA (2009) Introduction to Conservation Genetics, 2nd edn. Cambridge University Press, Cambridge, UK Frantz AC, Pope LC, Carpenter PJ, Roper TJ, Wilson GJ, Delahay RJ, Burke T (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12:1649–1661. https://doi.org/10.1046/j.1365-294X.2003.01848.x Frantz AC, Viglino A, Wilwert E et al (2021) Geo-referenced microsatellite data from Myotis emarginatus. figshare. Dataset. https://doi.org/10.6084/m9.figshare.17212124.v2 Frick WF, Kingston T, Flanders J (2019) A review of the major threats and challenges to global bat conservation. Ann NY Acad Sci 1469:5–25. https://doi.org/10.1111/nyas.14045 Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925 Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709 Gaisler J, Řehák Z, Bartonička T (2009) Bat casualties by road traffic (Brno-Vienna). Acta Theriol 54:147–155. https://doi.org/10.1007/BF03193170 Gessner B, Thies M, Schneider S (2018) Erste Wochenstuben der Wimperfledermaus (Myotis emarginatus Geoffroy, 1806) für Rheinland-Pfalz im Bitburger Gutland (Eifelkreis Bitburg-Prüm). Nyctalus 19:110–123 Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:485–486. https://doi.org/10.1093/oxfordjournals.jhered.a111627 Hardy O, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. https://doi.org/10.1046/J.1471-8286.2002.00305.X Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600 Hutterer R, Ivanova T, Meyers-Cords C, Rodrigues L (2005) Bat migrations in Europe: A review of banding data and literature. Bundesamt für Naturschutz, Bonn Hutterer R, Montermann C, Weigt M (2012) A Holocene bat fauna from the Eifel Mountains. Germany Vespertilio 16:159–164 Ibouroi MT, Cheha A, Arnal V et al (2018) The contrasting genetic patterns of two sympatric flying fox species from the Comoros and the implications for conservation. Conserv Genet 19:1425–1437. https://doi.org/10.1007/s10592-018-1111-6 IUCN (2021) The IUCN Red List of Threatened Species. Version 2021-1. https://www.iucnredlist.org. Accessed 1 June 2021 Jaeger JAG, Madrinan LF (2011) Landscape fragmentation in Europe. European Environmental Agency, Luxembourg Juste J, Ibáñez C, Munoz J, Trujillo D, Benda P, Karataş A, Ruedi M (2004) Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic Islands. Mol Phylogenet Evol 31:1114–1126. https://doi.org/10.1016/j.ympev.2003.10.005 Kerth G, Petit E (2005) Colonization and dispersal in a social species, the Bechstein’s bat (Myotis bechsteinii). Mol Ecol 14:3943–3950. https://doi.org/10.1111/j.1365-294X.2005.02719.x Kerth G, Mayer F, König B (2000) Mitochondrial DNA (mtDNA) reveals that female Bechstein’s bats live in closed societies. Mol Ecol 9:793–800. https://doi.org/10.1046/j.1365-294x.2000.00934.x Krull D, Schumm A, Metzner W, Neuweiler G (1991) Foraging areas and foraging behavior in the notch-eared bat, Myotis emarginatus (Vespertilionidae). Behav Ecol Sociobiol 28:247–253. https://doi.org/10.1007/BF00175097 Kunz TH, Braun de Torrez E, Bauer DM, Lobova TA, Fleming TH (2011) Ecosystem services provided by bats. Ann NY Acad Sci 1223:1–38. https://doi.org/10.1111/j.1749-6632.2011.06004.x Leblois R, Pudlo P, Neron J, Bertaux F, Beeravolu CR, Vitalis R, Rousset F (2014) Maximum-likelihood inference of population size contractions. Mol Biol Evol 31:2805–2823. https://doi.org/10.1093/molbev/msu212 Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116. https://doi.org/10.1111/2041-210X.12410 Luikart G, Zundel S, Rioux D et al (2008) Low genotyping error rates and noninvasive fecal DNA samples from bighorn sheep. J Wildl Manage 72:299–304. https://doi.org/10.2193/2006-006 Meinig HU, Boye P (2009) A review of negative impact factors threatening mammal populations in Germany. Folia Zool 58:279–290 Meyer CFJ, Kalko EKV, Kerth G (2009) Small-scale fragmentation effects on local genetic diversity in two phyllostomid bats with different dispersal abilities in Panama. Biotropica 41:95–102. https://doi.org/10.1111/j.1744-7429.2008.00443.x Miller SA, Dykes DD, Polesky HF (1988) A simple salting-out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215. https://doi.org/10.1093/nar/16.3.1215 Moussy C, Hosken DJ, Mathews F, Smith GC, Aegerter JN, Bearhop S (2013) Migration and dispersal patterns of bats and their influence on genetic structure. Mammal Rev 43:183–195. https://doi.org/10.1111/j.1365-2907.2012.00218.x Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590 Ochman K (2003) Late Pleistocene and Holocene bats (Chiroptera) from the Komarowa Cave (Cracow-Częstochowa Upland, Poland) - preliminary results. Acta Zool Cracov 46:73–84 Parsons KN, Jones G (2003) Dispersion and habitat use by Myotis daubentonii and Myotis nattereri during the swarming season: Implications for conservation. Anim Conserv 6:283–290. https://doi.org/10.1017/S1367943003003342 Pir JB, Dietz M (2018) Populationsdichte und Lebensraumnutzung der Wimperfledermaus (Myotis emarginatus Geoffroy, 1806) an ihrer nördlichen Verbreitungsgrenze in Luxemburg. Bull Soc Nat luxemb 120:107–121 Piraccini R (2016) Myotis emarginatus. The IUCN Red List of Threatened Species, e.T14129A22051191. https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T14129A22051191.en Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959 Puechmaille S (2016) The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol 16:608–627. https://doi.org/10.1111/1755-0998.12512 Puechmaille S, Mathy G, Petit E (2007) Good DNA from bat droppings. Acta Chiropterologica, 9:269-276. https://doi.org/10.3161/1733-5329(2007)9[269:GDFBD]2.0.CO;2 Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034 Raymond M, Rousset F (1995) GENEPOP (version 1.2): a population genetics software for exact tests and ecumenicism. J Hered 86:248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573 Rivers NM, Butlin RK, Altringham JD (2005) Genetic population structure of Natterer’s bats explained by mating at swarming sites and philopatry. Mol Ecol 14:4299–4312. https://doi.org/10.1111/j.1365-294X.2005.02748.x Rogers AR, Harpending H (1992) Population-growth makes waves in the distribution of pairwise genetic distances. Mol Biol Evol 9:552–569. https://doi.org/10.1093/oxfordjournals.molbev.a040727 Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 45:1219–1228 Rousset F, Leblois R (2012) Likelihood-based inferences under a coalescent model of isolation by distance: two-dimensional habitats and confidence intervals. Mol Biol Evol 29:957–973. https://doi.org/10.1093/molbev/msr262 Rossiter SJ, Benda P, Dietz C, Zhang S, Jones G (2007) Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites: implications for population history, taxonomy and conservation. Mol Ecol 16:4699–4714. https://doi.org/10.1111/j.1365-294X.2007.03546.x Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302. https://doi.org/10.1093/molbev/msx248 Ruedi M, Castella V (2003) Genetic consequences of the ice ages on nurseries of the bat Myotis myotis: a mitochondrial and nuclear survey. Mol Ecol 12:1527–1540. https://doi.org/10.1046/j.1365-294X.2003.01828.x Rueness EK, Jorde PE, Hellborg PE, Stenseth NC, Ellegren H, Jakobsen KA (2003) Cryptic population structure in a large, mobile mammalian predator: the Scandinavian lynx. Mol Ecol 12:2623–2633. https://doi.org/10.1046/j.1365-294X.2003.01952.x Schunger I, Dietz C, Merdschanova et al (2004) Swarming of bats (Chiroptera, Mammalia) in the Vodnite Dupki cave (Central Balkan National Park, Bulgaria). Acta Zool Bulg 56:323–330 Shaw RG (2019) From the past to the future: considering the value and limits of evolutionary prediction. Am Nat 193:1–10. https://doi.org/10.1086/700565 Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:453–464 Topál G (2001) Myotis emarginatus (Geoffroy’s bat)—Wimperfledermaus. In: Krapp F (ed) Handbuch der Säugetiere Europas. Band 4/I: Fledertiere. Aula Verlag, Kempten, pp 369–404 Tournayre O, Pons JB, Leuchtmann M et al (2019) Integrating population genetics to define conservation units from the core to the edge of Rhinolophus ferrumequinum western range. Ecol Evol 9:12272–12290. https://doi.org/10.1002/ece3.5714 Van der Meij T, Van Strien AJ, Haysom KA et al (2015) Return of the bats? A prototype indicator of trends in European bat populations in underground hibernacula. Mamm Biol 80:170–177. https://doi.org/10.1016/j.mambio.2014.09.004 Van Schaik J, Janssen R, Bosch T, Haarsma A-J, Dekker JJA, Kranstauber B (2015) Bats swarm where they hibernate: compositional similarity between autumn swarming and winter hibernation assemblages at five under-ground sites. PLoS ONE 10:e0130850. https://doi.org/10.1371/journal.pone.0130850 Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647. https://doi.org/10.1111/j.0030-1299.2005.13727.x Voigt CC, Kingston T (2016) Bats in the Anthropocene. In: In: Voigt CC, Kingston T (eds) Bats in the Anthropocene: conservation of bats in a changing world. Springer, Heidelberg, pp 1–9. https://doi.org/10.1007/978-3-319-25220-9_1 Viglino A (2012) Study of variability and genetic structure of European populations of Myotis emarginatus and Myotis capaccinii (Chiroptera, Vespertilionidae). Dissertation, University of Bologna Viglino A, Caniglia R, Ruiz-Gonzalez A et al (2016) What can we learn from faeces? Assessing genotyping success and genetic variability in three mouse-eared bat species from non-invasive genetic sampling. Hystrix 27:150–157. https://doi.org/10.4404/hystrix-27.2-11835 Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x Wright PGR, Hamilton PB, Schofield H, Glover A, Damant C, Davidson-Watts I, Mathews F (2018) Genetic structure and diversity of a rare woodland bat, Myotis bechsteinii: Comparison of continental Europe and Britain. Conserv Genet 19:777–787. https://doi.org/10.1007/s10592-018-1053-z