Consequences of exercising on ischemia–reperfusion injury in type 2 diabetic Goto-Kakizaki rat hearts: role of the HO/NOS system

Krisztina Kupai1, Renáta Szabó1, Médea Veszelka1, Amin Al Awar1, Szilvia Török1, Ákos Csonka1, Zoltán Baráth2, Anikó Pósa1, Csaba Varga1
1Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, 6726, Szeged, Hungary
2Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, 6720, Szeged, Hungary

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yin X, Zheng Y, Zhai X, Zhao X, Cai L. Diabetic inhibition of preconditioning- and postconditioning-mediated myocardial protection against ischemia/reperfusion injury. Exp Diabet Res. 2012;2012:198048. doi: 10.1155/2012/198048 .

Hawley JA. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diab Metab Res Rev. 2004;20(5):383–93. doi: 10.1002/dmrr.505 .

Hamilton KL, Staib JL, Phillips T, Hess A, Lennon SL, Powers SK. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med. 2003;34(7):800–9.

Powers SK, Quindry JC, Kavazis AN. Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury. Free Radic Biol Med. 2008;44(2):193–201. doi: 10.1016/j.freeradbiomed.2007.02.006 .

Szalai Z, Szasz A, Nagy I, Puskas LG, Kupai K, Kiraly A, et al. Anti-inflammatory effect of recreational exercise in TNBS-induced colitis in rats: role of NOS/HO/MPO system. Oxid Med Cell Longev. 2014;2014:925981. doi: 10.1155/2014/925981 .

Kupai K, Csonka C, Fekete V, Odendaal L, van Rooyen J, de Marais W, et al. Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol. 2009;297(5):H1729–35. doi: 10.1152/ajpheart.00484.2009 .

Horvath K, Varga C, Berko A, Posa A, Laszlo F, Whittle BJ. The involvement of heme oxygenase-1 activity in the therapeutic actions of 5-aminosalicylic acid in rat colitis. Eur J Pharmacol. 2008;581(3):315–23. doi: 10.1016/j.ejphar.2007.12.004 .

Posa A, Szabo R, Kupai K, Barath Z, Szalai Z, Csonka A et al. Cardioprotective effects of voluntary exercise in a rat model: role of matrix metalloproteinase-2. Oxid Med Cell Longev. 2015;2015:876805. doi: 10.1155/2015/876805

Bisbis S, Bailbe D, Tormo MA, Picarel-Blanchot F, Derouet M, Simon J, et al. Insulin resistance in the GK rat: decreased receptor number but normal kinase activity in liver. Am J Physiol. 1993;265(5 Pt 1):E807–13.

Sigal RJ, Kenny GP, Boule NG, Wells GA, Prud’homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(6):357–69.

Maekawa F, Fujiwara K, Kohno D, Kuramochi M, Kurita H, Yada T. Young adult-specific hyperphagia in diabetic Goto-kakizaki rats is associated with leptin resistance and elevation of neuropeptide Y mRNA in the arcuate nucleus. J Neuroendocrinol. 2006;18(10):748–56. doi: 10.1111/j.1365-2826.2006.01470.x .

Wang Z, Yang Y, Xiang X, Zhu Y, Men J, He M. Estimation of the normal range of blood glucose in rats. Wei sheng yan jiu = Journal of hygiene research. 2010;39(2):133–7.

Olive JL, Miller GD. Differential effects of maximal- and moderate-intensity runs on plasma leptin in healthy trained subjects. Nutrition. 2001;17(5):365–9.

Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther. 2008;88(11):1322–35. doi: 10.2522/ptj.20080008 .

Calvert JW, Condit ME, Aragon JP, Nicholson CK, Moody BF, Hood RL, et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res. 2011;108(12):1448–58. doi: 10.1161/CIRCRESAHA.111.241117 .

Sun MW, Zhong MF, Gu J, Qian FL, Gu JZ, Chen H. Effects of different levels of exercise volume on endothelium-dependent vasodilation: roles of nitric oxide synthase and heme oxygenase. Hypertens Res. 2008;31(4):805–16. doi: 10.1291/hypres.31.805 .

Gronros J, Jung C, Lundberg JO, Cerrato R, Ostenson CG, Pernow J. Arginase inhibition restores in vivo coronary microvascular function in type 2 diabetic rats. Am J Physiol Heart Circ Physiol. 2011;300(4):H1174–81. doi: 10.1152/ajpheart.00560.2010 .

Scott-Burden T. Regulation of nitric oxide production by tetrahydrobiopterin. Circulation. 1995;91(1):248–50.

Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 2008;60(1):79–127. doi: 10.1124/pr.107.07104 .

Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–54. doi: 10.1146/annurev.pharmtox.37.1.517 .

Buelow R, Tullius SG, Volk HD. Protection of grafts by hemoxygenase-1 and its toxic product carbon monoxide. Am J Transp Off J Am Soc Transp Am Soc Transp Surg. 2001;1(4):313–5.

Otterbein LE, Choi AM. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1029–37.

Clark JE, Foresti R, Sarathchandra P, Kaur H, Green CJ, Motterlini R. Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol. 2000;278(2):H643–51.

Fujita T, Toda K, Karimova A, Yan SF, Naka Y, Yet SF, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med. 2001;7(5):598–604. doi: 10.1038/87929 .

Foresti R, Motterlini R. The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Radical Res. 1999;31(6):459–75.

Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333(6174):664–6. doi: 10.1038/333664a0 .

Wang WW, Smith DL, Zucker SD. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology. 2004;40(2):424–33. doi: 10.1002/hep.20334 .

Grijalva J, Hicks S, Zhao X, Medikayala S, Kaminski PM, Wolin MS, et al. Exercise training enhanced myocardial endothelial nitric oxide synthase (eNOS) function in diabetic Goto-Kakizaki (GK) rats. Cardiovas Diabetol. 2008;7:34. doi: 10.1186/1475-2840-7-34 .

Ding QF, Hayashi T, Packiasamy AR, Miyazaki A, Fukatsu A, Shiraishi H, et al. The effect of high glucose on NO and O2- through endothelial GTPCH1 and NADPH oxidase. Life Sci. 2004;75(26):3185–94. doi: 10.1016/j.lfs.2004.06.005 .

Steensberg A, Keller C, Hillig T, Frosig C, Wojtaszewski JF, Pedersen BK, et al. Nitric oxide production is a proximal signaling event controlling exercise-induced mRNA expression in human skeletal muscle. FASEB J Off Publ Feder Am Soc Exp Biol. 2007;21(11):2683–94. doi: 10.1096/fj.06-7477com .

Tsutsumi E, Murata Y, Sakamoto M, Horikawa E. Effects of exercise on the nephron of Goto-Kakizaki rats: morphological, and advanced glycation end-products and inducible nitric oxide synthase immunohistochemical analyses. J Diabet Comp. 2015;29(4):472–8. doi: 10.1016/j.jdiacomp.2015.03.002 .

Ndisang JF, Lane N, Jadhav A. Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycemia in type 2 diabetes. Am J Physiol Endocrinol Metab. 2009;296(5):E1029–41. doi: 10.1152/ajpendo.90241.2008 .