Consensus methods based on machine learning techniques for marine phytoplankton presence–absence prediction
Tài liệu tham khảo
Alexandre, 2000, Combining independent and unbiased classifiers using weighted average, 2495
Andersen, 2003, Estimating Cell Numbers, 99
Anderson, 2010, Predicting potentially toxigenic pseudo-Nitzschia blooms in the chesapeake Bay, J. Mar. Syst., 83, 127, 10.1016/j.jmarsys.2010.04.003
Araújo, 2007, Ensemble forecasting of species distributions, Trends Ecol. Evol., 22, 42, 10.1016/j.tree.2006.09.010
Bergamino, 2016, Trophic niche shifts driven by phytoplankton in sandy beach ecosystems, Estuar. Coast. Shelf Sci., 180, 33, 10.1016/j.ecss.2016.06.023
Bourel, 2012, Model aggregation methods and applications, Mem. Trab. difusión Cient. Tec., 10, 19
Bourel, 2013, Apprentissage statistique par aggregation de modeles
Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655
Breiman, 1996, Stacked regression, Mach. Learn., 24, 49, 10.1007/BF00117832
Breiman, 1998, Arcing classifiers, Ann. Stat., 26, 801
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
Brotons, 2004, Presence–absence versus presence-only modelling methods for predicting bird habitat suitability, Ecography, 27, 437, 10.1111/j.0906-7590.2004.03764.x
Brown, 2005, Diversity creation methods: a survey and categorisation, IEEE Circuits Syst. Mag., 6, 5
Campbell, 1996, The global distribution of surf diatom accumulations, Rev. Chil. Hist. Nat., 69, 495
Comte, 2013, Species distribution modelling and imperfect detection: comparing occupancy versus consensus methods, Divers. Distrib., 19, 996, 10.1111/ddi.12078
Crisci, 2012, A review of supervised machine learning algorithms and their applications to ecological data, Ecol. Model., 240, 113, 10.1016/j.ecolmodel.2012.03.001
Cutler, 2007, Random forests for classification in ecology, Ecology, 88, 2783, 10.1890/07-0539.1
De’ath, 2007, Boosted trees for ecological modeling and prediction, Ecology, 88, 243, 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
De’ath, 2000, Classification and regression trees: a powerful yet simple technique for ecological data analysis, Ecology, 81, 3178, 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
Devroye, 1997
Drake, 2006, Modelling ecological niches with support vector machines, J. Appl. Ecol., 43, 424, 10.1111/j.1365-2664.2006.01141.x
Džeroski, 2004, Is combining classifiers with stacking better than selecting the best one?, Mach. Learn., 54, 255, 10.1023/B:MACH.0000015881.36452.6e
Elith, 2006, Novel methods improve prediction of species distributions from occurrence data, Ecography, 29, 129, 10.1111/j.2006.0906-7590.04596.x
Freund, 1997, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci., 55, 119, 10.1006/jcss.1997.1504
Fumera, 2005, A theoretical and experimental analysis of linear combiners for multiple classifier systems, IEEE Trans. Pattern Anal. Mach. Intell., 27, 942, 10.1109/TPAMI.2005.109
Guisan, 2002, Generalized linear and generalized additive models in studies of species distributions: setting the scene, Ecol. Model., 157, 89, 10.1016/S0304-3800(02)00204-1
Guisan, 2005, Predicting species distribution: offering more than simple habitat models, Ecol. Lett., 8, 993, 10.1111/j.1461-0248.2005.00792.x
Guo, 2005, Support vector machines for predicting distribution of sudden oak death in California, Ecol. Model., 182, 75, 10.1016/j.ecolmodel.2004.07.012
Hastie, 2001, 10.1007/978-0-387-21606-5
James, 2014
Jeong, 1999, The ecological roles of heterotrophic dinoflagellates in marine planktonic community, J. Eukaryot. Microbiol., 46, 390, 10.1111/j.1550-7408.1999.tb04618.x
Jeong, 2013, Red tides in Masan Bay, Korea in 2004-2005: i. Daily variations in the abundance of red-tide organisms and environmental factors, Harmful Algae, 30, S75, 10.1016/j.hal.2013.10.008
Jeong, 2015, A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions, Harmful Algae, 47, 97, 10.1016/j.hal.2015.06.004
Jeong, 2001, Prediction and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network, Ecol. Model., 146, 115, 10.1016/S0304-3800(01)00300-3
Kampichler, 2010, Classification in conservation biology: a comparison of five machine-learning methods, Eco. Inform., 5, 441, 10.1016/j.ecoinf.2010.06.003
Kim, 2016, Killing potential protist predators as a survival strategy of the newly described dinoflagellate Alexandrium pohangense, Harmful Algae, 55, 41, 10.1016/j.hal.2016.01.009
Kruk, 2012, The habitat template of phytoplankton morphology-based functional groups, Hydrobiologia, 698, 191, 10.1007/s10750-012-1072-6
Kuhn, 2013
Kuncheva, 2014
Lane, 2009, Development of a logistic regression model for the prediction of toxigenic pseudo-Nitzschia blooms in Monterey Bay, California, Mar. Ecol. Prog. Ser., 383, 37, 10.3354/meps07999
Lauzeral, 2015, The iterative ensemble modelling approach increases the accuracy of fish distribution models, Ecography, 38, 213, 10.1111/ecog.00554
Lee, 2003, Neural network modelling of coastal algal blooms, Ecol. Model., 159, 179, 10.1016/S0304-3800(02)00281-8
Lichman, 2013
Lobo, 2008, AUC: a misleading measure of the performance of predictive distribution models, Glob. Ecol. Biogeogr., 17, 145, 10.1111/j.1466-8238.2007.00358.x
Manel, 2001, Evaluating presence–absence models in ecology: the need to account for prevalence, J. Appl. Ecol., 38, 921, 10.1046/j.1365-2664.2001.00647.x
Marmion, 2009, Statistical consensus methods for improving predictive geomorphology maps, Comput. Geosci., 35, 615, 10.1016/j.cageo.2008.02.024
Marmion, 2009, Evaluation of consensus methods in predictive species distribution modelling, Divers. Distrib., 15, 59, 10.1111/j.1472-4642.2008.00491.x
Masoudnia, 2014, Mixture of experts: a literature survey, Artif. Intell. Rev., 42, 275, 10.1007/s10462-012-9338-y
McGillicuddy, 2010, Models of harmful algal blooms: conceptual, empirical, and numerical approaches, J. Mar. Syst., 83, 105, 10.1016/j.jmarsys.2010.06.008
Medvinsky, 2002, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 44, 311, 10.1137/S0036144502404442
Moisen, 2006, Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models, and tree-based methods, Ecol. Model., 199, 176, 10.1016/j.ecolmodel.2006.05.021
Moore, 2008, Impacts of climate variability and future climate change on harmful algal blooms and human health, Environ. Health, 7, S4, 10.1186/1476-069X-7-S2-S4
Odebrecht, 2014, Surf zone diatoms: a review of the drivers, patterns and role in sandy beaches food chains, Estuar. Coast. Shelf Sci., 150, 24, 10.1016/j.ecss.2013.07.011
Olden, 2002, A comparison of statistical approaches for modelling fish species distributions, Freshw. Biol., 47, 1976, 10.1046/j.1365-2427.2002.00945.x
Olden, 2008, Machine learning methods without tears: a primer for ecologists, Q. Rev. Biol., 83, 171, 10.1086/587826
Ortega, 2007, Multiannual and seasonal variability of water masses and fronts over the Uruguayan Shelf, J. Coast. Res., 23, 618, 10.2112/04-0221.1
Polikar, 2006, Ensemble based systems in decision making, IEEE Circuits Syst. Mag., 6, 21, 10.1109/MCAS.2006.1688199
Core Team, 2016, R: A Language and Environment for Statistical Computing
Recknagel, 1998, Modelling and prediction of phyto-and zooplankton dynamics in Lake Kasumigaura by artificial neural networks, Lakes Reserv. Res. Manag., 3, 123, 10.1111/j.1440-1770.1998.tb00039.x
Richardson, 2003, A dynamic quantitative approach for predicting the shape of phytoplankton profiles in the ocean, Prog. Oceanogr., 59, 301, 10.1016/j.pocean.2003.07.003
Scardi, 1999, Developing an empirical model of phytoplankton primary production: a neural network case study, Ecol. Model., 120, 213, 10.1016/S0304-3800(99)00103-9
Schapire, 1998, Boosting the margin: a new explanation for the effectiveness of voting methods, Ann. Stat., 26, 322
Smayda, 2002, Adaptive ecology, growth strategies and the global bloom expansion of dinoflagellates, J. Oceanogr., 58, 281, 10.1023/A:1015861725470
Talbot, 1990, A review of the ecology of surf-zone diatoms, with special reference to Anaulus australis, Oceanogr. Mar. Biol. Annu. Rev., 28, 155
Thuiller, 2004, Patterns and uncertainties of species' range shifts under climate change, Glob. Chang. Biol., 10, 2020, 10.1111/j.1365-2486.2004.00859.x
Thuiller, 2009, BIOMOD — a platform for ensemble forecasting of species distributions, Ecography, 32, 369, 10.1111/j.1600-0587.2008.05742.x
Thuiller, 2005, Climate change threats to plant diversity in Europe, Proc. Natl. Acad. Sci. U. S. A., 102, 8245, 10.1073/pnas.0409902102
Ting, 1999, Issues in stacked generalization, J. Artif. Intell. Res., 10, 271, 10.1613/jair.594
Todorovski, 2000, Combining Multiple Models with Meta Decision Trees Principles of Data Mining and Knowledge Discovery, 10.1007/3-540-45372-5_6
Utermöhl, 1958
Vapnik, 1995
Vilas, 2014, Support vector machine-based method for predicting pseudo-Nitzschia spp. blooms in coastal waters (Galician Rias, NW Spain), Prog. Oceanogr., 124, 66, 10.1016/j.pocean.2014.03.003
Wilson, 2001, Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes, Ecol. Model., 146, 69, 10.1016/S0304-3800(01)00297-6
Wolpert, 1992, Stacked generalization, Neural Netw., 5, 241, 10.1016/S0893-6080(05)80023-1