Connectivity in human cancellous bone by three‐dimensional magnetic resonance microscopy

Medical Physics - Tập 24 Số 9 - Trang 1409-1420 - 1997
Mark Wessels1, Ralph P. Mason2, Peter P. Antich3, Joseph E. Zerwekh3, Charles Y.C. Pak4
1Advanced Radiological Sciences, UT Southwestern Medical Center, Dallas, 75235, USA.
2RAD Research
3University of Texas Southwestern Medical Center
4Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, Texas 75235

Tóm tắt

Bone architecture affects strength and resistance to fracture. Trabecular connectivity is now recognized as an important measure of bone quality, and could be useful as an indicator of the osteoporotic condition, as well as a tool for measuring the effectiveness of therapies. We have applied three‐dimensional magnetic resonance imaging microscopy to human cancellous bone biopsies, and report the results of connectivity measurements. Sample heterogeneity was examined on the basis of connectivity density for subvolumes. The choice of examination volume had a significant effect on connectivity density measurements, but sample volumes greater than were found to give stable results. Connectivity density was strongly correlated with nodal density, and two‐dimensional estimates of connectivity, but not bone volume fraction. Repeat measurement at constant resolution (69×138×109 μm, signal‐to‐noise ratio of about 35) showed reproducibility of about 5% for connectivity density. Our most recent results have significantly enhanced resolution (69×69×43 μm); bone fraction remained constant, but apparent connectivity density is greater.

Từ khóa


Tài liệu tham khảo

M. L. Bouxsein E. R. Myers and W. C. Haynes “Biomechanics of age related fractures ” inOsteoporosis edited by R. Marcus D. Feldman and J. Kelsey (Academic San Diego 1996) pp. 373–393.

P. J. Meunier “Bone Histomorphometry ” inOsteoporosis: Etiology Diagnosis and Management edited by B. L. Riggs and L. J. Melton (Lippencott‐Raven Philadelphia 1995) pp. 299–318.

10.1007/BF01673420

J. C. Koch “The laws of bone architecture ” Am. J. Anat.21 177–293 (1917).

10.1172/JCI111096

10.1111/j.1365-2818.1974.tb03878.x

10.1016/S0169-6009(08)80205-X

L. A. Feldkamp S. A. Goldstein A. M. Parfitt G. Jesion and M. Kleerekoper “The direct examination of three‐dimensional bone architecture in vitro by computed tomography ” J. Bone Miner. Res.4 3–11 (1989).

10.1016/S8756-3282(95)00263-4

J. H. Kinney N. E. Lane and D. L. Haupt “In vivo three‐dimensional microscopy of trabecular bone ” J. Bone Miner. Res.10 264–270 (1995).

10.1088/0031-9155/39/1/009

10.1007/BF01673429

H. Chung F. Wehrli J. Williams and S. Wehrli “Three‐Dimensional Nuclear Magnetic Resonance Microimaging of Trabecular Bone ” J. Bone Miner. Res.10 1452–1461 (1995).

10.1111/j.1365-2818.1990.tb03038.x

H. Chung F. W. Wehrli J. L. Williams S. D. Kugelmass and S. L. Wehrli “Quantitative analysis of trabecular microstructure by 400 MHz Nuclear Magnetic Resonance Imaging ” J. Bone Miner. Res.10 803–811 (1995).

10.1002/mrm.1910130303

F. W. Wehrli “Trabecular Bone Imaging ” inEncyclopedia of NMR edited by D. M. Grant and R. K. Harris (Wiley London 1995) p. 4810.

10.1006/jmrb.1995.0002

10.1073/pnas.90.21.10250

10.1118/1.597263

K. Engelke S. M. Song and H. K. Genant “A digital model of trabecular bone ” J. Bone Miner. Res.11 480–489 (1996).

10.1007/BF02554913

10.1016/8756-3282(93)90245-6

10.1016/8756-3282(95)00489-0

S. A. Goldstein S. J. Hollister J. L. Kuhn and N. Kikuchi “The mechanical and remodeling properties of trabecular bone ” inBiomechanics of Diarthrodial Joints edited by V. C. Mow A. Ratcliff and S. L.‐Y. Woo (Springer New York 1990) pp. 61–81.

10.1016/0026-0800(70)90002-9

10.1016/0167-8655(95)00034-E

W. X. Gong and G. Bertrand “A simple parallel 3D thinning alorithm ” International Conference on Pattern Recognition 17–21 June 1990 (unpublished) pp. 188–190.

10.1016/8756-3282(87)90004-4

10.1007/BF01673395

10.1007/BF01673423

10.1016/0167-8655(94)90046-9

10.1007/BF01420736

R. W. E. Mellish M. W. Ferguson‐Pell G. V. B. Cocharan R. Lindsay and D. W. Dempster “A new method for assessing two‐dimensional cancellous bone structure: Comparison between iliac crest and lumbar vertebrae ” J. Bone Miner. Res.6 689–696 (1991).

10.1016/8756-3282(96)00048-8

10.1007/BF01673421

10.1016/8756-3282(87)90012-3

M. Kleerekoper and L. V. Avioli “Evaluation and treatment of postmenopausal osteoporosis ” inPrimer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism edited by M. J. Favus (Raven New York 1993) pp. 223–228.

10.1056/NEJM199506153322401

10.1016/S8756-3282(96)90165-9

B. L. Riggs S. F. Hodgson H. Wahner J. Muhs and W. M. O'Fallon “Effect of long‐term fluoride therapy in bone metabolism bone density and fracture rate in type 1 (postmenopausal) osteoporosis: Final results of prospective controlled double‐blind clinical trial ” J. Bone Miner. Res.4 S104 (1989).

C. Y. C. Pak J. E. Zerwekh P. P. Antich N. H. Bell and F. R. Singer “Perspective: Slow‐release sodium fluoride in osteoporosis ” J. Bone Miner. Res.11 561–564 (1996).

J. E. Zerwekh P. P. Antich K. Y. Sakhaee J. Gonzales F. Gottschalk and C. Y. C. Pak “Assessment by reflection ultrasound method of the effect of intermittent slow‐release sodium fluoride‐calcium citrate therapy on material strength of bone ” J. Bone Miner. Res.6 239–243 (1991).

S. Khosla B. L. Riggs and L. J. Melton “Clinical Spectrum ” inOsteoporosis: Etiology Diagnosis and Management edited by B. L. Riggs and L. J. Melton (Lippincott‐Raven Philadelphia 1995) pp. 205–223.

P. P. Antich C. Y. C. Pak J. Gonzales J. Anderson K. Sakhaee and C. Rubin “Measurement of intrinsic bone qualityin vivoby reflection ultrasound: Correction of impaired quality with slow‐release sodium fluoride and calcium citrate ” J. Bone Miner. Res.8 301–311 (1993).

10.1007/BF01673428