Connectivity in Wireless Ad-hoc Networks with a Log-normal Radio Model

R. Hekmat1, Piet Van Mieghem1
1Delft University of Technology, Electrical Engineering, Mathematics, and Computer Science, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

IETF mobile ad-hoc networks (MANET) working group, http://www.ietf.org/html.charters/manet-charter.html.

E. Royer and C.-K. Toh, A review of current routing protocols for ad-hoc mobile wireless networks, IEEE Personal Communications 6(2) (1999) 46–55.

O. Dousse, F. Baccelli and P. Thiran, Impact of interference on connectivity in ad hoc networks, IEEE Infocom2003 (April 2003).

P. Gupta and P.R. Kumar, The capacity of wireless networks. IEEE Transactions on Information Theory 46(2) (2000) 388–404.

M.E.J. Newman, S.H. Strogatz and D.J. Watts, Random graphs witharbitrary degree distributions and their applications, Physical Review E 64 (2001) 026118.

G. Nemeth and G. Vattay, Giant clusters in random ad hoc networks, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 67 036110/1 036110/6 (March 2003).

I. Glauche, W. Krause, R. Sollacher and M. Greiner, Continuum percolation of wireless ad-hoc communication networks, cond-mat/0304579 (April 2003).

B. Bollobas, Random Graphs (Academic Press, 1985).

M.D. Penrose, On k-connectivity for a geometric random graph. Random Structures and Algorithms 15 (1999) 145–164.

R. Prasad, Universal Wireless Personal Communications (Artech House Publishers, 1998).

T. Rappaport, Wireless Communications, Principles and Practice (Upper Saddle River Prentice-Hall PTR, 2002).

C. Bettstetter, On the minimum node degree and connectivity of a wireless multihop network, in: Proc. 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc) (Lausanne, Switzerland, June 9–11 2002) pp. 80–91.

H. Bertoni, Radio Propagation for Modern Wireless Systems (Prentice-Hall PTR, 2000).

R. Hekmat and P. Van Mieghem, Degree distribution and hopcount in wireless ad-hoc networks, in: Proceeding of the 11th IEEE International Conference on Networks (ICON 2003) (Sydney, Australia, Sept. 28-Oct. 1 2003) pp. 603–609.

C. Bettstetter and C. Hartmann, Connectivity of wireless multihop networks in a shadow fading environment, in Proceedings of the 6th ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM) (San Diego, CA, USA, September 2003) pp. 28–32.

D.J. Watts, Small World, the Dynamics of Networks Between Order and Randomness (Princeton University Press, Princeton, New Jersey, 1999).

R. Albert and A.L. Barabasi, Statistical mechanics of complex networks, Review of Modern Physics 74 (2002) 47–97.

J. Diaz, J. Petit and M. Serna, Random geometric problems on [0,1]2, Randomization and Approximation Techniques in Computer Science vol. 1518 of Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1998) pp. 294–306.

P. Erdos and A. Renyi, On the evolution of random graphs, Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5 (1960) 17–61.

B. Bollobas, Modern Graph Theory (Springer-Verlag, New York, 1998).

G. Hooghiemstra and P. Van Mieghem, On the mean distance in scale free graphs, Delft University of Technology, report20040605, http://www.nas.its.tudelft.nl/people/Piet/telconference.html 2004.

S. Janson, D.E. Knuth, T. Luczak and B. Pitel, The birth of the giant component, Random Structures and Algorithms 4(3) (1993) 231–358.

M. Molloy and B. Reed, The size of the giant component of a random graph with a given degree sequence, Combinatorics, Probability and Computing 7 (1998) 295–305.

P. Van Mieghem, The asymptotic behaviour of queueing systems: Large deviations theory and dominant pole approximation, Queueing Systems 23 (1996) 27–55.