Connecting mem-models with classical theories
Tóm tắt
A family of mem-models, including the mem-dashpots, mem-springs, and most recently, mem-inerters, is emerging as a new and powerful way of capturing complex nonlinear behaviors of materials and systems under various types of dynamic loads involving different frequency, amplitude, and loading histories (e.g., hysteresis). Under the framework of nonlinear state-space representation and hybrid dynamical systems, mem-springs may be formulated to effectively represent an inherent degradation of material state. It is shown in this study, for the first time, how the absement (time integral of strain/displacement), a signature state variable for a mem-spring, can be connected with the damage variable, a key quantity in continuum damage mechanics. The generalized momentum (time integral of stress), on the other hand, is shown to be efficient in modeling strain ratcheting via the concept of mem-dashpot. It is also shown in this study, for the first time, how two formulations of the memcapacitive system models (for mem-springs) are special cases of the Preisach model.
Tài liệu tham khảo
Beck, J.L., Jayakumar, P.: Class of masing models for plastic hysteresis in structures. In: Proceedings 14th ASCE Structures Congress, Chicago, IL (1996)
Bennett, K.C., Zecevic, M., Luscher, D.J., Lebensohn, R.A.: A thermo-elastoplastic self-consistent homogenization method for inter-granular plasticity with application to thermal ratcheting of tatb. Adv. Model. Simul. Eng. Sci. 7(3), 1–32 (2020)
Biolek, D., Biolek, Z., Biolkova, V.: Memristors and other higher-order elements in generalized through-across domain. In: Proceedings of the 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Caro, Monaco (2016)
Chaboche, J.L.: Continuum damage mechanics: present state and future trends. Nucl. Eng. Des. 105, 19–33 (1987)
Chua, L.O.: Nonlinear circuit foundations for nanodevices, Part i: the four-element torus. In: Proceedings of the IEEE, vol 91 (2003)
Chua, L.O.: Memrister—the missing circuit element. IEEE Trans. Circuit Theory CT–18(5), 507–519 (1971)
Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)
Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97, 1717–1724 (2009)
Fan, W.R.S.: The damping properties and the earthquake response spectrum of steel frames. PhD thesis, University of Michigan, Ann Arbor, MI (1968)
Goldfarb, M., Celanovic, N.: Modeling piezoelectric stack actuators for control of micromanipulation. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation. Minneapolis, MN (1996)
Gorbet, R.B., Morris, K.A., Wang, D.W.L.: Learning, control, and hybrid systems. In: Control of hysteretic systems: a statespace approach. Springer, New York, pp. 432–451 (1998)
Gurtin, M.E., Francis, E.C.: Simple rate-independence model for damage. J. Spacecr. 18(3), 285–286 (1981). engineering Notes
Houlsby, G.T., Puzrin, A.M.: Principles of Hyperplasticity: An Approach to Plasticity Theory Based on Thermodynamic Principles. Springer, Berlin (2007)
Houslby, G.T., Abadie, C.N., Beuckelaers, W.J.A.P., Byrne, B.W.: A model for nonlinear hysteretic and ratcheting behaviour. Int. J. Solids Struct. 120, 67–80 (2017)
Iwan, W.D.: A distributed-element model for hysteresis and its steady-state dynamic response. ASME J. Appl. Mech. 33(4), 893–900 (1966)
Iwan, W.D.: On a class of models for the yielding behavior of continuous and composite systems. ASME J. Appl. Mech. 34(3), 612–617 (1967)
Jayakumar, P., Beck, J.L.: System identification using nonlinear structural models. In: Nake HG, Yao JTP (eds) Structural Safety Evaluation Based on System Identification Approaches, Friedr. Vieweg & Sohn Braunschweig/Wiesbaden, Vieweg International Scientific Book Series, vol Proceedings of the Workshop at Lambrecht/Pfalz, pp. 82–102 (1988)
Jayakumar, P.: Modeling and identification in structural dynamics. PhD thesis, California Institute of Technology, Pasadena, CA (1987)
Jeltsema, D., Scherpen, J.M.A.: Multidomain modeling of nonlinear networks and systems: energy- and power-based perspectives. IEEE Control Syst. Mag. 29, 28–59 (2009)
Jeltsema, D.: Memory elements: a paradigm shift in Lagrangian modeling of electrical circuits. In: Proceedings of MathMod Conference, Vienna (2012)
Kachanov, L.M.: Introduction to Continuum Damage Mechanics. Mechanics of Elastic Stability. Martinus Nijhoff Publishers, Dordrercht (1986)
Kalman, R.E.: Algebraic aspects of the theory of dynamical systems. In: Hale, J., LaSalle, J. (eds.) Differential Equations and Dynamical Systems, pp. 133–146. Academic Press, New York and London (1967)
Krasnosel’skii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, Berlin (1989)
Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107, 83–89 (1985)
Lemaitre, J.: A Course on Damage Mechanics, 2nd edn. Springer, Berlin (1996)
Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)
Lubarda, V.A., Sumarac, D., Krajcinovic, D.: Preisach model and hysteretic behaviour of ductile materials. Eur. J. Mech. A/Solids 12(4), 445–470 (1993)
Masing, G.: Eigenspannungen und verfestigung beim messing. In: Proceedings of the 2nd International Congress for Applied Mechanics, Zurich, Switzerland, pp. 332–335 (1926) (in German)
Mayergoyz, I.D.: Mathematical Models of Hysteresis and Their Applications. Elsevier Series in Electromagnetism. Elsevier, Amsterdam (2003)
McDowell, D.L., Miller, M.P., Brooks, D.C.: A unified creep-plasticity theory for solder alloys. In: Schroeder, S., Mitchell, M. (eds.) Fatigue of Electronic Materials, pp. 42–59. ASTM International, West Conshohocken, PA (1994)
Moosbrugger, J.C., McDowell, D.L.: A rate-dependent bounding surface model with a generalized image point for cyclic nonproportional viscoplasticity. J. Mech. Phys. Solids 38(5), 627–656 (1990)
Morris, K.A.: What is hysteresis? Appl. Mech. Rev. 64(5), 14 (2011)
Oster, G.F., Auslander, D.M.: The memristor: a new bond graph element. ASME J. Dyn. Syst. Meas. Control 94(3), 249–252 (1973)
Padthe, A.K., Drincic, B., Oh, J., Rizos, D.D., Fassois, S.D., Bernstein, D.S.: Duhem modeling for friction-induced hysteresis. IEEE Control Syst. Mag. 28(5), 90–107 (2008)
Paul, S.K.: A critical review of experimental aspects in ratcheting fatigue: microstructure to specimen to component. J. Mater. Res. Technol. 8(5), 4894–4914 (2019)
Pei, J.S., Beck, J.L.: Understanding nonlocal memory in extended masing models for hysteresis through model equivalency and numerical investigation. Nonlinear Dyn. (2020) (under review for publication)
Pei, J.S., Carboni, B., Lacarbonara, W.: Mem-models as building blocks for simulation and identification of hysteretic systems. Nonlinear Dyn. (2020a)
Pei, J.S., Quadrelli, M.B., Wright, J.P.: Mem-models and state event location algorithm for a prototypical aerospace system. Nonlinear Dyn. (2020b)
Pei, J.S., Wright, J.P., Gay-Balmaz, F., Beck, J.L., Todd, M.D.: On choosing state variables for piecewise-smooth dynamical system simulations. Nonlinear Dyn. (2018)
Pei, J.S.: Mem-spring models combined with hybrid dynamical system approach to represent material behavior. ASCE J. Eng. Mech. 144(12), 04018109 (2018)
Pei, J.S., Wright, J.P., Todd, M.D., Masri, S.F., Gay-Balmaz, F.: Understanding memristors and memcapacitors for engineering mechanical applications. Nonlinear Dyn. 80(1), 457–489 (2015)
Pei, J.S., Gay-Balmaz, F., Wright, J.P., Todd, M.D., Masri, S.F.: Dual input–output pairs for modeling hysteresis inspired by mem-models. Nonlinear Dyn. 88(4), 2435–2455 (2017)
Preisach, F.: About the magnetic aftereffect. Mag. Phys. 94(5–6), 277–302 (1935)
Pyke, R.: Nonlinear soil models for irregular cyclic loadings. J. Geotechn. Eng. Div. ASCE 105, 715–726 (1979)
Roylance, D.: Engineering viscoelasticity. https://ocw.mit.edu/courses/materials-science-and-engineering/3-11-mechanics-of-materials-fall-1999/modules/MIT3_11F99_visco.pdf (2001)
Royston, T.J.: Leveraging the equivalence of hysteresis models from different fields for analysis and numerical simulation of jointed structures. ASME J. Comput. Nonlinear Dyn. 3, 031006-1–031006-8 (2008)
Segalman, D.J., Starr, M.J.: Relationships among certain joints constitutive models. Report SAND2004-4321, Sandia National Laboratories (2004)
Segalman, D.J., Starr, M.J.: Inversion of Masing models via continuous Iwan systems. Int. J. Non-Linear Mech. 43, 74–80 (2008)
Song, C., Brandon, J.A., Featherston, C.A.: Distributed-element preisach model for hysteresis of shape memory alloys. Proc. Inst. Mech. Eng. 215, 673–682 (2001)
Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)
Visintin, A.: Differential Models of Hysteresis. Springer, Berlin (1994)
Wagg, J.D., Pei, J.S.: Modeling helical fluid inerter system with invariant mem-models. J. Struct. Control Health Monit. (2020)
Willems, J.C.: Dissipative dynamical systems part i: general theory. Arch. Rat. Mech. Anal. 45, 321–351 (1972)