Connected components of spaces of Morse functions with fixed critical points

Elena Kudryavtseva1
1Faculty of Mechanics and Mathematics, Moscow State University, Leninskie Gory, Moscow, 119991, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

B. L. Reinhart, “The Winding Number on Two-Manifolds,” Ann. Inst. Fourier 10, 271 (1960).

Yu. M. Burman, “Morse Theory for Functions of Two Variables Without Critical Points,” Functional Differential Equations 3(1–2), 31 (1996).

Yu. M. Burman, “Triangulation of Surfaces with Boundary and the Homotopy Principle for Functions without Critical Points,” Ann. Global Anal. and Geometry 17(3), 221 (1999).

E. A. Kudryavtseva, “Realization of Smooth Functions on Surfaces as Height Functions,” Matem. Sbornik 190(3), 29 (1999) [Sbornik Math. 190 (3–4), 349 (1999)].

E. A. Kudryavtseva, “Canonical Form of Reeb Graph for Morse Functions on Surfaces. Inversion of 2-Sphere in 3-Space,” Int. J. Shape Modeling 5(1), 69 (1999).

V. V. Sharko, “Functions on Surfaces. I”, in Some Problems of Modern Mathematics, Ed. by V. V. Sharko (Proc. Inst. Math. Ukr. NAS 25, Kiev, 1998), pp. 408–434 [in Russian].

S. I. Maksymenko, “Path-Components of Morse Mappings Spaces on Surfaces” Comment. math. helv. 80, 655 (2005).

V. I. Arnold, “Spaces of Functions with Moderate Singularities,” Funkt. Anal. Pril. 23(3), 1 (1989) [Funct. Anal. and its Appl. 23 (3), 169 (1989)].

A. T. Fomenko and H. Zieschang, “Topological Invariant and Criterion of Equivalence of Integrable Hamiltonian Systems with two Degrees of Freedom,” Izvestiya Akad. Nauk SSSR, Matem. 54(3), 546 (1990) [Math. of the USSR-Izvestiya 36 (3), 567 (1991)].

A. V. Bolsinov and A. T. Fomenko, “Orbital Equivalence of Integrable Hamiltonian Systems with Two Degrees of Freedom. Classification Theorem, I and II,” Matem. Sbornik 185(4), 27 and (5) 27 (1994) [Sbornik Math. 81 (2) 421 (1995) and 82 (1), 21 (1985)].

A. V. Bolsinov and A. T. Fomenko, Introduction into Topology of Integrable Hamiltonian Systems, (Nauka, Moscow, 1997) [in Russian]. //

E. A. Kudryavtseva, “Stable Topological and Smooth Invariants for Conjugacy of Hamiltonian Systems on Surfaces,” in Topological Methods in Theory of Hamiltonian Systems, Ed. by A. T. Fomenko and A. V. Bolsinov (Factorial, Moscow, 1998), pp. 147–202 [in Russian].

E. V. Kulinich “On Topologically Equivalent Morse Functions on Surfaces,” Methods Funct. Anal. and Topology 4(1), 59 (1998).

S. I. Maksymenko, “Homotopy Types of Stabilizers and Orbits of Morse Functions on Surfaces,” Ann. Global Anal. and Geometry 29(3), 241 (2006).

E. A. Kudryavtseva, “Uniform Morse Lemma and Isotopy Criterion for Morse Functions on Surfaces,” Vestn. Mosk. Univ., Matem. Mekhan., No. 4, 13 (2009) [Moscow Univ. Math. Bulletin 64 (4), 12 (2009)].

E. A. Kudryavtseva and D. A. Permyakov, “Framed Morse Functions on Surfaces,” Matem. Sbornik 201(4), 33 (2010) [Sbornik Math. 201 (4), 501 (2010)].

M. Dehn, “Die Gruppe der Abbildungsklassen (Das arithmetische Feld auf Flächen),” Acta math. 69, 135 (1938).

D. Johnson, “The Structure of the Torelli Group. II: A Characterization of the Group Generated by Twists on Bounding Curves,” Topology 24(2), 113 (1985).

D. R. J. Chillingworth, “Winding Numbers on Surfaces, I,” Math. Ann. 196, 218 (1972).

M. R. Bridson and A. Haefliger, Metric Spaces of Nonpositive Curvature (Springer, Berlin, Heidelberg, N.Y., Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo, 1999).

G. M. Ziegler, Lectures on Polytopes. Graduate Texts in Mathematics, Vol. 152 (Springer-Verlag, Berlin, N.Y., 1995).