Coniveau 2 Complete Intersections and Effective Cones

Geometric and Functional Analysis - Tập 19 - Trang 1494-1513 - 2009
Claire Voisin1
1CNRS and Institut de Mathématiques de Jussieu, Paris, France

Tóm tắt

Griffiths computation of the Hodge filtration on the cohomology of a smooth hypersurface X of degree d in $${\mathbb{P}^n}$$ shows that it has coniveau ≥ c once n ≥ dc. The generalized Hodge conjecture (GHC) predicts that the cohomology of X is then supported on a closed algebraic subset of codimension at least c. This is essentially unknown for c ≥ 2. In the case where c = 2, we exhibit a geometric phenomenon in the variety of lines of X explaining the estimate for the coniveau, and show that (GHC) would be implied in this case by the following conjecture on effective cones of cycles of intermediate dimension: Very moving subvarieties have their class in the interior of the effective cone.

Tài liệu tham khảo

Bloch S., Srinivas S.: Remarks on correspondences and algebraic cycles. Amer. J. of Math. 105, 1235–1253 (1983) S. Boucksom, J.-P. Demailly, M. Paun, T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, preprint (2004); arXiv:math/0405285 Deligne P.: Théorie de Hodge II. Publ. Math. IHES 40, 5–57 (1971) Esnault H., Viehweg E., Levine M.: Chow groups of projective varieties of very small degree. Duke Math. J. 87, 29–58 (1997) Fulton W., Lazarsfeld R.: Positivity and excess intersection, in “Enumerative Geometry and classical Algebraic Geometry, (Nice 1981)”. Birkhäuser Prog. Math. 24, 97–105 (1982) Griffiths P.: On the periods of certain rational integrals I,II. Ann. of Math. 90, 460–541 (1969) Grothendieck A.: Hodge’s general conjecture is false for trivial reasons. Topology 8, 299–303 (1969) Jiang Zhi: On the restriction of holomorphic forms. Manuscripta Math. 124, 2–173182 (2007) Manivel L.: Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence, Cours Spécialisés 3. Société Mathématique de France, Paris (1998) Otwinowska A.: Remarques sur les groupes de Chow des hypersurfaces de petit degré. C.R. Acad. Sci. Paris Sér. I Math. 329(1), 51–56 (1999) T. Peternell, Submanifolds with ample normal bundles and a conjecture of Hartshorne arXiv:0804.1023 Schoen C.: On Hodge structures and non-representability of Chow groups. Compositio Mathematica 88, 285–316 (1993) Shimada I.: On the cylinder homomorphisms of Fano complete intersections. J. Math. Soc. Japan 42(4), 719–738 (1990) Voisin C.: Sur les groupes de Chow de certaines hypersurfaces. C.R. Acad. Sci. Paris Sér. I Math. 322(1), 73–76 (1996) C. Voisin, Hodge theory and complex algebraic geometry. I and II, Cambridge Studies in Advanced Mathematics 76 and 77, Cambridge University Press, Cambridge, 2002, 2003.