Congruences involving the Fermat quotient

Czechoslovak Mathematical Journal - Tập 63 - Trang 949-968 - 2014
Romeo Meštrović1
1Department of Mathematics, Maritime Faculty, University of Montenegro, Kotor, Montenegro

Tóm tắt

Let p > 3 be a prime, and let q p (2) = (2 p−1 − 1)/p be the Fermat quotient of p to base 2. In this note we prove that $$\sum\limits_{k = 1}^{p - 1} {\frac{1}{{k \cdot {2^k}}}} \equiv {q_p}(2) - \frac{{p{q_p}{{(2)}^2}}}{2} + \frac{{{p^2}{q_p}{{(2)}^3}}}{3} - \frac{7}{{48}}{p^2}{B_{p - 3}}(\bmod {p^3})$$ , which is a generalization of a congruence due to Z.H. Sun. Our proof is based on certain combinatorial identities and congruences for some alternating harmonic sums. Combining the above congruence with two congruences by Z.H. Sun, we show that $${q_p}{(2)^3} \equiv - 3\sum\limits_{k = 1}^{p - 1} {\frac{{{2^k}}}{{{k^3}}}} + \frac{7}{{16}}\sum\limits_{k = 1}^{(p - 1)/2} {\frac{1}{{{k^3}}}} (\bmod p)$$ , which is just a result established by K. Dilcher and L. Skula. As another application, we obtain a congruence for the sum $$\sum\limits_{k = 1}^{p - 1} {{1 \mathord{\left/ {\vphantom {1 {\left( {k^2 \cdot 2^k } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {k^2 \cdot 2^k } \right)}}}$$ modulo p 2 that also generalizes a related Sun’s congruence modulo p.

Tài liệu tham khảo

T. Agoh, K. Dilcher, L. Skula: Fermat quotients for composite moduli. J. Number Theory 66 (1997), 29–50. T. Agoh, K. Dilcher, L. Skula: Wilson quotients for composite moduli. Math. Comput. 67 (1998), 843–861. T. Agoh, L. Skula: The fourth power of the Fermat quotient. J. Number Theory 128 (2008), 2865–2873. H.-Q. Cao, H. Pan: A congruence involving products of q-binomial coefficients. J. Number Theory 121 (2006), 224–233. R. Crandall, K. Dilcher, C. Pomerance: A search for Wieferich and Wilson primes. Math. Comp. 66 (1997), 433–449. K. Dilcher, L. Skula: A new criterion for the first case of Fermat’s last theorem. Math. Comput. 64 (1995), 363–392. K. Dilcher, L. Skula: The cube of the Fermat quotient. Integers (electronic only) 6 (2006), Paper A24, 12 pages. K. Dilcher, L. Skula, I. S. Slavutskii, eds.: Bernoulli numbers. Bibliography (1713–1990). Enlarged ed. Queen’s Papers in Pure and Applied Mathematics 87. Queen’s University, Kingston, 1991. J. B. Dobson: On Lerch’s formula for the Fermat quotient. Preprint, arXiv:1103. 3907v3, 2012. F. G. Dorais, D. Klyve: A Wieferich prime search up to 6 · 7 × 1015. J. Integer Seq. (electronic only) 14 (2011), Article 11. 9. 2, 14 pages. G. Eisenstein: Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhängen und durch gewisse lineare Funktional-Gleichungen definiert werden. Bericht. K. Preuss. Akad. Wiss. Berlin 15 (1850), 36–42; Mathematische Werke. Band II (1975), 705–711. Chelsea Publishing Company, New York. (In German.) R. Ernvall, T. Metsänkylä: On the p-divisibility of Fermat quotients. Math. Comput. 66 (1997), 1353–1365. J. W. L. Glaisher: On the residues of the sums of products of the first p − 1 numbers, and their powers, to modulus p 2 or p 3. Quart. J. 31 (1900), 321–353. J. W. L. Glaisher: On the residues of r p−1 to modulus p 2, p 3, etc. Quart. J. 32 (1900), 1–27. A. Granville: Arithmetic properties of binomial coefficients. I: Binomial coefficients modulo prime powers. Organic Mathematics. Proceedings of the workshop, Simon Fraser University, Burnaby, Canada, December 12–14, 1995. CMS Conf. Proc. 20 (J. Borwein et al., eds.). American Mathematical Society, Providence, 1997, pp. 253–276. A. Granville: Some conjectures related to Fermat’s Last Theorem. Number Theory. Proceedings of the first conference of the Canadian Number Theory Association held at the Banff Center, Banff, Alberta, Canada, April 17–27, 1988 (R. A. Mollin, ed.). Walter de Gruyter, Berlin, 1990, pp. 177–192. A. Granville: The square of the Fermat quotient. Integers 4 (2004), Paper A22, 3 pages, electronic only. S. Jakubec: Note on the congruences 2p−1 ≡ 1 (mod p 2), 3p−1 ≡ 1 (mod p 2), 5p−1 ≡ 1 (mod p 2). Acta Math. Inform. Univ. Ostrav. 6 (1998), 115–120. S. Jakubec: Note on Wieferich’s congruence for primes p ≡ 1 (mod 4). Abh. Math. Semin. Univ. Hamb. 68 (1998), 193–197. S. Jakubec: Connection between Fermat quotients and Euler numbers. Math. Slovaca 58 (2008), 19–30. W. Kohnen: A simple congruence modulo p. Am. Math. Mon. 104 (1997), 444–445. E. Lehmer: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math. 39 (1938), 350–360. M. Lerch: Zur Theorie des Fermatschen Quotienten (a p−1 − 1)/p = q(a). Math. Ann. 60 (1905), 471–490. (In German.) R. Meštrović: An extension of Sury’s identity and related congruences. Bull. Aust. Math. Soc. 85 (2012), 482–496. R. Meštrović: An elementary proof of a congruence by Skula and Granville. Arch. Math., Brno 48 (2012), 113–120. H. Pan: On a generalization of Carlitz’s congruence. Int. J. Mod. Math. 4 (2009), 87–93. P. Ribenboim: 13 Lectures on Fermat’s Last Theorem. Springer, New York, 1979. L. Skula: A Remark on Mirimanoff polynomials. Comment. Math. Univ. St. Pauli 31 (1982), 89–97. L. Skula: Fermat and Wilson quotients for p-adic integers. Acta Math. Inform. Univ. Ostrav. 6 (1998), 167–181. L. Skula: Fermat’s Last theorem and the Fermat quotients. Comment. Math. Univ. St. Pauli 41 (1992), 35–54. L. Skula: A note on some relations among special sums of reciprocals modulo p. Math. Slovaca 58 (2008), 5–10. I. S. Slavutsky: Leudesdorf’s theorem and Bernoulli numbers. Arch. Math., Brno 35 (1999), 299–303. M. Z. Spivey: Combinatorial sums and finite differences. Discrete Math. 307 (2007), 3130–3146. Z. H. Sun: Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl. Math. 105 (2000), 193–223. Z. H. Sun: Congruences involving Bernoulli and Euler numbers. J. Number Theory 128 (2008), 280–312. Z. H. Sun: Five congruences for primes. Fibonacci Q. 40 (2002), 345–351. Z. H. Sun: The combinatorial sum \(\sum\nolimits_{k = 0,k \equiv r(\bmod m)}^n {\left( {_k^n } \right)}\) and its applications in number theory II. J. Nanjing Univ., Math. Biq. 10 (1993), 105–118. (In Chinese.) Z. W. Sun: A congruence for primes. Proc. Am. Math. Soc. 123 (1995), 1341–1346. Z. W. Sun: Binomial coefficients, Catalan numbers and Lucas quotients. Sci. China, Math. 53 (2010), 2473–2488. Z. W. Sun: On the sum Σ k≡r (mod m) \(\sum\nolimits_{k = 0,k \equiv r(\bmod m)} {\left( {_k^n } \right)}\) and related congruences. Isr. J. Math. 128 (2002), 135–156. J. J. Sylvester: Sur une propriété des nombres premiers qui se ratache au théorème de Fermat. C. R. Acad. Sci. Paris 52 (1861), 161–163; The Collected Mathematical Papers of James Joseph Sylvester. Volume II (1854–1873). With Two Plates (1908), 229–231. Cambridge University Press, Cambridge. R. Tauraso: Congruences involving alternating multiple harmonic sums. Electron. J. Comb. 17 (2010), Research Paper R16, 11 pages. A. Wieferich: On Fermat’s Last Theorem. J. für Math. 136 (1909), 293–302. (In German.) J. Wolstenholme: On certain properties of prime numbers. Quart. J. 5 (1862), 35–39.