Congruences for cubic partition pairs modulo powers of 3
Tóm tắt
Let b(n) be the number of cubic partition pairs of n. We establish three congruences for b(n) modulo arbitrary powers of 3. Meanwhile, we prove some conjectures proposed by the first author.
Tài liệu tham khảo
Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part I. Springer, New York (2005)
Berndt, B.C.: Ramanujan’s Notebooks, Part III. Springer, New York (1991)
Borwein, J.M., Borwein, P.B., Garvan, F.G.: Some cubic modular identities of Ramanujan. Trans. Am. Math. Soc. 343, 35–47 (1994)
Chan, H.-C.: Ramanujan’s cubic continued fraction and a generalization of his ”most beautiful identity”. Int. J. Number Theory 6, 673–680 (2010)
Chan, H.-C.: Ramanujan’s cubic continued fraction and Ramanujan type congruences for a ceratin partition function. Int. J. Number Theory 6, 819–834 (2010)
Chan, H.-C.: Distribution of a certain partition function modulo powers of primes. Acta Math. Sin. 27, 625–634 (2011)
Chan, H.H.: On Ramanujan’s cubic continued fraction. Acta Arith. 73, 343–355 (1995)
Chan, H.H., Toh, P.C.: New analogues of Ramanujan’s partition identities. J. Number Theory 130, 1898–1913 (2010)
Kim, B., Kim, B.: An analog of crank for a certain kind of partition function arising from the cubic continued fraction. Acta Arith. 148, 1–19 (2011)
Lin, B.L.S.: Congruences modulo 27 for cubic partition pairs. J. Number Theory 171, 31–42 (2017)
Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988)
Wang, L.: Arithmetic identities and congruences for partition triples with 3-cores. Int. J. Number Theory 12, 995–1010 (2016)
Zhao, H., Zhong, Z.: Ramanujan type congruences for a partition function. Electron. J. Comb. 18, P58 (2011)