Congested Aggregation via Newtonian Interaction

Archive for Rational Mechanics and Analysis - Tập 227 Số 1 - Trang 1-67 - 2018
Katy Craig1, In-Won Kim2, Yao Yao3
1Department of Mathematics, University of California, Santa Barbara, Santa Barbara, CA, USA
2Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, USA
3School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexander, D.; Kim, I.; Yao, Y.: Quasi-static evolution and congested crowd transport. Nonlinearity 27(4), 823–858 (2014). doi: 10.1088/0951-7715/27/4/823

Ambrosio, L.; Gigli, N.; Savaré, G.: Gradient flows in metric spaces and in the space of probability measures, 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008)

Ambrosio, L.; Serfaty, S.: A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61(11), 1495–1539 (2008). doi: 10.1002/cpa.20223

Balagué, D.; Carrillo, J.; Laurent, T.; Raoul, G.: Nonlocal interactions by repulsive-attractive potentials: radial ins/stability. Phys. D. 260, 5–25 (2013)

Balagué, D.; Carrillo, J.A.; Yao, Y.: Confinement for repulsive-attractive kernels. Discrete Contin. Dyn. Syst. Ser. B 19(5), 1227–1248 (2014). doi: 10.3934/dcdsb.2014.19.1227

Benedetto, D.; Caglioti, E.; Carrillo, J.A.; Pulvirenti, M.: A non-Maxwellian steady distribution for one-dimensional granular media. J. Stat. Phys. 91(5–6), 979–990 (1998). doi: 10.1023/A:1023032000560

Bertozzi, A.L.; Carrillo, J.A.; Laurent, T.: Blow-up in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity 22(3), 683–710 (2009). doi: 10.1088/0951-7715/22/3/009

Bertozzi, A.L.; Kolokolnikov, T.; Sun, H.; Uminsky, D.; von Brecht, J.: Ring patterns and their bifurcations in a nonlocal model of biological swarms. Commun. Math. Sci. 13(4), 955–985 (2015). doi: 10.4310/CMS.2015.v13.n4.a6

Bertozzi, A.L., Laurent, T., Léger, F.: Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions. Math. Models Methods Appl. Sci. 22(suppl. 1), 1140,005, 39, 2012. doi: 10.1142/S0218202511400057

Blanchet, A.: A gradient flow approach to the Keller–Segel systems. to appear in RIMS Kokyuroku's lecture notes, preprint at http://publications.ut-capitole.fr/16518/

Blanchet, A.; Carlen, E.A.; Carrillo, J.A.: Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model. J. Funct. Anal. 262(5), 2142–2230 (2012). doi: 10.1016/j.jfa.2011.12.012

Burchard, A.; Chambers, G.R.: Geometric stability of the Coulomb energy. Calc. Var. Partial Differ. Equ. 54(3), 3241–3250 (2015). doi: 10.1007/s00526-015-0900-8

Burger, M.; Fetecau, R.; Huang, Y.: Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion. SIAM J. Appl. Dyn. Syst. 13(1), 397–424 (2014). doi: 10.1137/130923786

Caffarelli, L., Salsa, S.: A geometric approach to free boundary problems, Graduate Studies in Mathematics, vol. 68. American Mathematical Society, Providence, RI, 2005. doi: 10.1090/gsm/068

Caffarelli, L., Vazquez, J.L.: Viscosity solutions for the porous medium equation. In: Differential equations: La Pietra 1996 (Florence), Proc. Sympos. Pure Math., vol. 65, pp. 13–26. Amer. Math. Soc., Providence, RI, 1999. doi: 10.1090/pspum/065/1662747

Carrillo, J.A., Hittmeir, S., Volzone, B., Yao, Y.: Nonlinear aggregation–diffusion equations: radial symmetry and long time asymptotics, in preparation

Carrillo, J.A.; Lisini, S.; Mainini, E.: Uniqueness for Keller-Segel-type chemotaxis models. Discrete Contin. Dyn. Syst. 34(4), 1319–1338 (2014). doi: 10.3934/dcds.2014.34.1319

Carrillo, J.A.; McCann, R.J.; Villani, C.: Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179(2), 217–263 (2006). doi: 10.1007/s00205-005-0386-1

Chuang, Y.L., Huang, Y., D'Orsogna, M., Bertozzi, A.: Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials. IEEE International Conference on Robotics and Automation, pp. 2292–2299, 2007

Craig, K.: Nonconvex gradient flow in the Wasserstein metric and applications to constrained nonlocal interactions, preprint at http://arxiv.org/abs/1512.07255

Doye, J.P.K.; Wales, D.J.; Berry, R.S.: The effect of the range of the potential on the structures of clusters. J. Chem. Phys. 103, 4234–4249 (1995)

Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

Fellner, K.; Raoul, G.: Stable stationary states of non-local interaction equations. Math. Models Methods Appl. Sci. 20(12), 2267–2291 (2010). doi: 10.1142/S0218202510004921

Fetecau, R.C.; Huang, Y.: Equilibria of biological aggregations with nonlocal repulsive-attractive interactions. Phys. D 260, 49–64 (2013). doi: 10.1016/j.physd.2012.11.004

Fetecau, R.C.; Huang, Y.; Kolokolnikov, T.: Swarm dynamics and equilibria for a nonlocal aggregation model. Nonlinearity 24(10), 2681–2716 (2011). doi: 10.1088/0951-7715/24/10/002

Fusco, N., Maggi, F., Pratelli, A.: Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 8(5), 51–71, 2009

Jordan, R.; Kinderlehrer, D.; Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998). doi: 10.1137/S0036141096303359

Judovič, V.I.: Non-stationary flows of an ideal incompressible fluid. Z̆. Vyčisl. Mat. i Mat. Fiz. 3, 1032–1066, 1963

Keller, E., Segel, L.: Initiation of slide mold aggregation viewed as an instability. J. Theor. Biol. 26, 1970

Kim, I., Pozar, N.: Porous medium equation to Hele-Shaw flow with general initial density, preprint at http://arxiv.org/abs/1509.06287

Kim, I.; Yao, Y.: The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal. 44(2), 568–602 (2012)

Kim, I.C.: Uniqueness and existence results on the Hele-Shaw and the Stefan problems. Arch. Ration. Mech. Anal. 168(4), 299–328 (2003). doi: 10.1007/s00205-003-0251-z

Kim, I.C.; Lei, H.K.: Degenerate diffusion with a drift potential: a viscosity solutions approach. Discrete Contin. Dyn. Syst. 27(2), 767–786 (2010). doi: 10.3934/dcds.2010.27.767

Lieb, E.H.; Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, RI (1997)

Lieb, E.H., Yau, H.T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112(1), 147–174, 1987. http://projecteuclid.org/euclid.cmp/1104159813

Lin, F.; Zhang, P.: On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete Contin. Dyn. Syst. 6(1), 121–142 (2000). doi: 10.3934/dcds.2000.6.121

Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145, 1984. http://www.numdam.org/item?id=AIHPC_1984__1_2_109_0

Loeper, G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. (9) 86(1), 68–79, 2006. doi: 10.1016/j.matpur.2006.01.005

Masmoudi, N.; Zhang, P.: Global solutions to vortex density equations arising from sup-conductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(4), 441–458 (2005). doi: 10.1016/j.anihpc.2004.07.002

Maury, B.; Roudneff-Chupin, A.; Santambrogio, F.: A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci. 20(10), 1787–1821 (2010). doi: 10.1142/S0218202510004799

Maury, B.; Roudneff-Chupin, A.; Santambrogio, F.; Venel, J.: Handling congestion in crowd motion modeling. Netw. Heterog. Media 6(3), 485–519 (2011). doi: 10.3934/nhm.2011.6.485

Mellet, A., Perthame, B., Quiros, F.: A Hele-Shaw problem for tumor growth, preprint at http://arxiv.org/abs/1512.069957

Perea, L.; Gómez, G.; Elosegui, P.: Extension of the Cucker-Smale control law to space flight formations. AIAA J. Guid. Control Dyn. 32, 527–537 (2009)

Poupaud, F.: Diagonal defect measures, adhesion dynamics and Euler equation. Methods Appl. Anal. 9(4), 533–561 (2002). doi: 10.4310/MAA.2002.v9.n4.a4

Rechtsman, M.; Stillinger, F.; Torquato, S.: Optimized interactions for targeted self-assembly: application to a honeycomb lattice. Phys. Rev. Lett. 95(22), 228301 (2005)

Santambrogio, F.: Optimal transport for applied mathematicians. Progress in Nonlinear Differential Equations and their Applications, vol. 87. Birkhäuser/Springer, Cham, 2015. doi: 10.1007/978-3-319-20828-2 . Calculus of variations, PDEs, and modeling

Sugiyama, Y.: Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems. Differ. Integral Equ. 19(8), 841–876 (2006)

Sun, H., Uminsky, D., Bertozzi, A.L.: Stability and clustering of self-similar solutions of aggregation equations. J. Math. Phys. 53(11), 115,610, 18, 2012. doi: 10.1063/1.4745180

Talenti, G.: Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3(4), 697–718, 1976

Topaz, C.M.; Bertozzi, A.L.; Lewis, M.A.: A nonlocal continuum model forbiological aggregation. Bull. Math. Biol. 68(7), 1601–1623 (2006). doi: 10.1007/s11538-006-9088-6

Vázquez, J.L.: The Porous Medium Equation. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. Mathematical theory

Villani, C.: Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)

Wales, D.: Energy landscapes of clusters bound by short-ranged potentials. Chem. Eur. J. Chem. Phys. 11, 2491–2494 (2010)