Congenital cataracts affect the retinal visual cycle and mitochondrial function: A multi-omics study of GJA8 knockout rabbits

Journal of Proteomics - Tập 287 - Trang 104972 - 2023
Weijie Sun1,2,3, Siyi Gu1,2,3, Fan Zhang1,2,3, Mengxiang Xu1,2,3, Pingjun Chang1,2,3, Yune Zhao1,2,3
1Wenzhou Medical University School of Optometry and Ophthalmology, Eye Hospital, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
2The State Key Laboratory of Optometry, Ophthalmology and Vision Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
3National Center for Clinical and Medical Research, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China

Tài liệu tham khảo

Li, 2020, Molecular genetics of congenital cataracts, Exp. Eye Res., 191, 10.1016/j.exer.2019.107872 Wu, 2016, Prevalence and epidemiological characteristics of congenital cataract: a systematic review and meta-analysis, Sci. Rep., 6, 28564, 10.1038/srep28564 Liu, 2017, Cataracts, Lancet, 390, 600, 10.1016/S0140-6736(17)30544-5 Yekta, 2022, Global prevalence and causes of visual impairment and blindness in children: a systematic review and meta-analysis, J. Curr. Ophthalmol., 34, 1, 10.4103/joco.joco_135_21 Mansouri, 2013, Deprivation amblyopia and congenital hereditary cataract, Semin. Ophthalmol., 28, 321, 10.3109/08820538.2013.825289 Birch, 2012, Fixation control and eye alignment in children treated for dense congenital or developmental cataracts, J. AAPOS., 16, 156, 10.1016/j.jaapos.2011.11.007 Demirkilinc Biler, 2015, Strabismus in infants following congenital cataract surgery, Graefes Arch. Clin. Exp. Ophthalmol., 253, 1801, 10.1007/s00417-015-2983-5 Louison, 2019, Visual outcomes and complications of congenital cataract surgery, J. Fr. Ophtalmol., 42, 368, 10.1016/j.jfo.2018.10.007 Esposito Veneruso, 2017, Early light deprivation effects on human cone-driven retinal function, Acta Ophthalmol., 95, 133, 10.1111/aos.13191 Daniel, 2019, Optical coherence tomography findings after childhood lensectomy, Invest. Ophthalmol. Vis. Sci., 60, 4388, 10.1167/iovs.19-26806 Tripathi, 1991, Rodent models of congenital and hereditary cataract in man, Lens Eye Toxic Res., 8, 373 Yuan, 2016, CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts, Sci. Rep., 6, 22024, 10.1038/srep22024 Li, 2021, Development of a potent embryonic chick lens model for studying congenital cataracts in vivo, Commun. Biol., 4, 325, 10.1038/s42003-021-01849-0 Viet, 2020, Modeling ocular lens disease in Xenopus, Dev. Dyn., 249, 610, 10.1002/dvdy.147 Wignes, 2013, p62 expression and autophagy in αB-crystallin R120G mutant knock-in mouse model of hereditary cataract, Exp. Eye Res., 115, 263, 10.1016/j.exer.2013.06.026 Yoshida, 2005, New genetic model rat for congenital cataracts due to a connexin 46 (Gja3) mutation, Pathol. Int., 55, 732, 10.1111/j.1440-1827.2005.01896.x Akimov, 2014, Dark rearing alters the normal development of spatiotemporal response properties but not of contrast detection threshold in mouse retinal ganglion cells, Dev. Neurobiol., 74, 692, 10.1002/dneu.22164 Wu, 2007, Light deprivation delays morphological differentiation of bipolar cells in the rabbit retina, Brain Res., 1170, 13, 10.1016/j.brainres.2007.06.091 Vistamehr, 2004, Light deprivation suppresses the light response of inner retina in both young and adult mouse, Vis. Neurosci., 21, 23, 10.1017/S0952523804041033 Giovannelli, 2008, Long-term dark rearing induces permanent reorganization in retinal circuitry, Biochem. Biophys. Res. Commun., 365, 349, 10.1016/j.bbrc.2007.10.204 Dunn, 2013, Sensory experience shapes the development of the visual system’s first synapse, Neuron., 80, 1159, 10.1016/j.neuron.2013.09.024 Shi, 2022, Mutations of CX46/CX50 and cataract development, Front. Mol. Biosci., 9, 10.3389/fmolb.2022.842399 Xia, 2006, Absence of alpha3 (Cx46) and alpha8 (Cx50) connexins leads to cataracts by affecting lens inner fiber cells, Exp. Eye Res., 83, 688, 10.1016/j.exer.2006.03.013 Guo, 2022, A novel mutation GJA8 NM_005267.5: c.124G > A, p.(E42K) causing congenital nuclear cataract, BMC Ophthalmol., 22, 172, 10.1186/s12886-022-02386-y Luo, 2022, Recent advances of intraocular lens materials and surface modification in cataract surgery, Front. Bioeng. Biotechnol., 10, 10.3389/fbioe.2022.913383 Sengupta, 2020, Mapping the age of laboratory rabbit strains to human, Int. J. Prev. Med., 11, 194 Teclemariam, 2020, Considerations for mass spectrometry-based multi-omic analysis of clinical samples, Exp. Rev. Proteom., 17, 99, 10.1080/14789450.2020.1724540 Coronado, 2021, The impact of mass spectrometry application to screen new proteomics biomarkers in ophthalmology, Int. Ophthalmol., 41, 2619, 10.1007/s10792-021-01807-z Kaplan, 2023, Retinal regions shape human and murine Müller cell proteome profile and functionality, Glia., 71, 391, 10.1002/glia.24283 She, 2022, Metabolomic study of a rat model of retinal detachment, Metabolites., 12, 1077, 10.3390/metabo12111077 Cantrell, 2023, Proteome remodeling of the eye Lens at 50 years identified with data-independent acquisition, Mol. Cell. Proteomics, 22, 10.1016/j.mcpro.2022.100453 Wu, 2017, Proteomics analysis and proteogenomic characterization of different physiopathological human lenses, BMC Ophthalmol., 17, 253, 10.1186/s12886-017-0642-9 Theophanous, 2023, Biomarkers of pediatric cataracts: a proteomics analysis of aqueous fluid, Int. J. Mol. Sci., 24, 9040, 10.3390/ijms24109040 Moon, 2023, Retinal proteome analysis reveals a region-specific change in the rabbit myopia model, Int. J. Mol. Sci., 24, 1286, 10.3390/ijms24021286 Lhor, 2014, Retinol dehydrogenases: membrane-bound enzymes for the visual function, Biochem. Cell Biol., 92, 510, 10.1139/bcb-2014-0082 Li, 2012, Flicker downregulates the content of crystallin proteins in form-deprived C57BL/6 mouse retina, Exp. Eye Res., 101, 1, 10.1016/j.exer.2012.05.003 Morgan, 2004, Screening for differential gene expression during the development of form-deprivation Myopia in the chicken, Optom. Vis. Sci., 81, 148, 10.1097/00006324-200402000-00013 Ashby, 2010, Changes in retinal αB-crystallin (cryab) RNA transcript levels during periods of altered ocular growth in chickens, Exp. Eye Res., 90, 238, 10.1016/j.exer.2009.10.011 Ishibashi, 2000, Up-regulation of crystallin mRNAs in form-deprived chick eyes, Exp. Eye Res., 70, 153, 10.1006/exer.1999.0765 Subramanian, 2005, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A., 102, 15545, 10.1073/pnas.0506580102 Lenhart, 2022, Current management of infantile cataracts, Surv. Ophthalmol., 67, 1476, 10.1016/j.survophthal.2022.03.005 Meier, 2017, Unilateral amblyopia affects two eyes: fellow eye deficits in amblyopia, Invest. Ophthalmol. Vis. Sci., 58, 1779, 10.1167/iovs.16-20964 Mitchell, 2022, Critical periods in vision revisited, Annu Rev. Vis. Sci., 8, 291, 10.1146/annurev-vision-090721-110411 Lee, 2006, Dark-rearing-induced reduction of GABA and GAD and prevention of the effect by BDNF in the mouse retina, Eur. J. Neurosci., 24, 2118, 10.1111/j.1460-9568.2006.05078.x Di Marco, 2009, Permanent functional reorganization of retinal circuits induced by early long-term visual deprivation, J. Neurosci., 29, 13691, 10.1523/JNEUROSCI.3854-09.2009 P. O, 1990, Development redistribution of photoreceptors across the Macaca nemestrina (pigtail macaque) retina, J. Comp. Neurol., 298 Young, 1984, Cell death during differentiation of the retina in the mouse, J. Comp. Neurol., 229, 362, 10.1002/cne.902290307 Esposito Veneruso, 2017, Developmental visual deprivation: long term effects on human cone driven retinal function, Graefes Arch. Clin. Exp. Ophthalmol., 255, 2481, 10.1007/s00417-017-3780-0 Saari, 2012, Vitamin A metabolism in rod and cone visual cycles, Annu. Rev. Nutr., 32, 125, 10.1146/annurev-nutr-071811-150748 Chen, 2018, Potential mutations in Chinese pathologic myopic patients and contributions to phenotype, Curr. Mol. Med., 18, 689, 10.2174/1566524019666190211120016 Verhoeven, 2013, Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia, Nat. Genet., 45, 314, 10.1038/ng.2554 Zhou, 2020, Increased choroidal blood perfusion can inhibit form deprivation myopia in Guinea pigs, Invest. Ophthalmol. Vis. Sci., 61, 25, 10.1167/iovs.61.13.25 He, 2017, Analysis of factors associated with the ocular features of congenital cataract children in the Shanghai pediatric cataract study, J. Ophthalmol., 2017, 8647435, 10.1155/2017/8647435 Cui, 2020, Transcriptomic analysis of the developmental similarities and differences between the native retina and retinal organoids, Invest. Ophthalmol. Vis. Sci., 61, 6, 10.1167/iovs.61.3.6 Dahlmann-Noor, 2022, Shining a light on foveal development after congenital cataract surgery, Ann. Transl. Med., 10, 1045, 10.21037/atm-2022-31 Kudryavtseva, 2016, Mitochondrial dysfunction and oxidative stress in aging and cancer, Oncotarget., 7, 44879, 10.18632/oncotarget.9821 Sreekumar, 2021, Glutathione metabolism and the novel role of mitochondrial GSH in retinal degeneration, Antioxidants (Basel)., 10, 661, 10.3390/antiox10050661 Domazou, 2012, Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress, Free Radic. Biol. Med., 53, 1565, 10.1016/j.freeradbiomed.2012.08.005 Tokarz, 2013, Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD), Biogerontology., 14, 461, 10.1007/s10522-013-9463-2 Osborne, 2013, Maintenance of retinal ganglion cell mitochondrial functions as a neuroprotective strategy in glaucoma, Curr. Opin. Pharmacol., 13, 16, 10.1016/j.coph.2012.09.002 Kaarniranta, 2020, Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration, Prog. Retin. Eye Res., 79, 10.1016/j.preteyeres.2020.100858 Ballatori, 2009, Glutathione dysregulation and the etiology and progression of human diseases, Bchm., 390, 191, 10.1515/BC.2009.033 Trachsel-Moncho, 2018, Oxidative stress and autophagy-related changes during retinal degeneration and development, Cell Death Dis., 9, 812, 10.1038/s41419-018-0855-8 Beyer, 2022, Loss of fiber cell communication may contribute to the development of cataracts of many different etiologies, Front. Physiol., 13, 10.3389/fphys.2022.989524 Shen, 2019, Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics, Nat. Commun., 10, 1516, 10.1038/s41467-019-09550-x