Congenital cataracts affect the retinal visual cycle and mitochondrial function: A multi-omics study of GJA8 knockout rabbits
Tài liệu tham khảo
Li, 2020, Molecular genetics of congenital cataracts, Exp. Eye Res., 191, 10.1016/j.exer.2019.107872
Wu, 2016, Prevalence and epidemiological characteristics of congenital cataract: a systematic review and meta-analysis, Sci. Rep., 6, 28564, 10.1038/srep28564
Liu, 2017, Cataracts, Lancet, 390, 600, 10.1016/S0140-6736(17)30544-5
Yekta, 2022, Global prevalence and causes of visual impairment and blindness in children: a systematic review and meta-analysis, J. Curr. Ophthalmol., 34, 1, 10.4103/joco.joco_135_21
Mansouri, 2013, Deprivation amblyopia and congenital hereditary cataract, Semin. Ophthalmol., 28, 321, 10.3109/08820538.2013.825289
Birch, 2012, Fixation control and eye alignment in children treated for dense congenital or developmental cataracts, J. AAPOS., 16, 156, 10.1016/j.jaapos.2011.11.007
Demirkilinc Biler, 2015, Strabismus in infants following congenital cataract surgery, Graefes Arch. Clin. Exp. Ophthalmol., 253, 1801, 10.1007/s00417-015-2983-5
Louison, 2019, Visual outcomes and complications of congenital cataract surgery, J. Fr. Ophtalmol., 42, 368, 10.1016/j.jfo.2018.10.007
Esposito Veneruso, 2017, Early light deprivation effects on human cone-driven retinal function, Acta Ophthalmol., 95, 133, 10.1111/aos.13191
Daniel, 2019, Optical coherence tomography findings after childhood lensectomy, Invest. Ophthalmol. Vis. Sci., 60, 4388, 10.1167/iovs.19-26806
Tripathi, 1991, Rodent models of congenital and hereditary cataract in man, Lens Eye Toxic Res., 8, 373
Yuan, 2016, CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts, Sci. Rep., 6, 22024, 10.1038/srep22024
Li, 2021, Development of a potent embryonic chick lens model for studying congenital cataracts in vivo, Commun. Biol., 4, 325, 10.1038/s42003-021-01849-0
Viet, 2020, Modeling ocular lens disease in Xenopus, Dev. Dyn., 249, 610, 10.1002/dvdy.147
Wignes, 2013, p62 expression and autophagy in αB-crystallin R120G mutant knock-in mouse model of hereditary cataract, Exp. Eye Res., 115, 263, 10.1016/j.exer.2013.06.026
Yoshida, 2005, New genetic model rat for congenital cataracts due to a connexin 46 (Gja3) mutation, Pathol. Int., 55, 732, 10.1111/j.1440-1827.2005.01896.x
Akimov, 2014, Dark rearing alters the normal development of spatiotemporal response properties but not of contrast detection threshold in mouse retinal ganglion cells, Dev. Neurobiol., 74, 692, 10.1002/dneu.22164
Wu, 2007, Light deprivation delays morphological differentiation of bipolar cells in the rabbit retina, Brain Res., 1170, 13, 10.1016/j.brainres.2007.06.091
Vistamehr, 2004, Light deprivation suppresses the light response of inner retina in both young and adult mouse, Vis. Neurosci., 21, 23, 10.1017/S0952523804041033
Giovannelli, 2008, Long-term dark rearing induces permanent reorganization in retinal circuitry, Biochem. Biophys. Res. Commun., 365, 349, 10.1016/j.bbrc.2007.10.204
Dunn, 2013, Sensory experience shapes the development of the visual system’s first synapse, Neuron., 80, 1159, 10.1016/j.neuron.2013.09.024
Shi, 2022, Mutations of CX46/CX50 and cataract development, Front. Mol. Biosci., 9, 10.3389/fmolb.2022.842399
Xia, 2006, Absence of alpha3 (Cx46) and alpha8 (Cx50) connexins leads to cataracts by affecting lens inner fiber cells, Exp. Eye Res., 83, 688, 10.1016/j.exer.2006.03.013
Guo, 2022, A novel mutation GJA8 NM_005267.5: c.124G > A, p.(E42K) causing congenital nuclear cataract, BMC Ophthalmol., 22, 172, 10.1186/s12886-022-02386-y
Luo, 2022, Recent advances of intraocular lens materials and surface modification in cataract surgery, Front. Bioeng. Biotechnol., 10, 10.3389/fbioe.2022.913383
Sengupta, 2020, Mapping the age of laboratory rabbit strains to human, Int. J. Prev. Med., 11, 194
Teclemariam, 2020, Considerations for mass spectrometry-based multi-omic analysis of clinical samples, Exp. Rev. Proteom., 17, 99, 10.1080/14789450.2020.1724540
Coronado, 2021, The impact of mass spectrometry application to screen new proteomics biomarkers in ophthalmology, Int. Ophthalmol., 41, 2619, 10.1007/s10792-021-01807-z
Kaplan, 2023, Retinal regions shape human and murine Müller cell proteome profile and functionality, Glia., 71, 391, 10.1002/glia.24283
She, 2022, Metabolomic study of a rat model of retinal detachment, Metabolites., 12, 1077, 10.3390/metabo12111077
Cantrell, 2023, Proteome remodeling of the eye Lens at 50 years identified with data-independent acquisition, Mol. Cell. Proteomics, 22, 10.1016/j.mcpro.2022.100453
Wu, 2017, Proteomics analysis and proteogenomic characterization of different physiopathological human lenses, BMC Ophthalmol., 17, 253, 10.1186/s12886-017-0642-9
Theophanous, 2023, Biomarkers of pediatric cataracts: a proteomics analysis of aqueous fluid, Int. J. Mol. Sci., 24, 9040, 10.3390/ijms24109040
Moon, 2023, Retinal proteome analysis reveals a region-specific change in the rabbit myopia model, Int. J. Mol. Sci., 24, 1286, 10.3390/ijms24021286
Lhor, 2014, Retinol dehydrogenases: membrane-bound enzymes for the visual function, Biochem. Cell Biol., 92, 510, 10.1139/bcb-2014-0082
Li, 2012, Flicker downregulates the content of crystallin proteins in form-deprived C57BL/6 mouse retina, Exp. Eye Res., 101, 1, 10.1016/j.exer.2012.05.003
Morgan, 2004, Screening for differential gene expression during the development of form-deprivation Myopia in the chicken, Optom. Vis. Sci., 81, 148, 10.1097/00006324-200402000-00013
Ashby, 2010, Changes in retinal αB-crystallin (cryab) RNA transcript levels during periods of altered ocular growth in chickens, Exp. Eye Res., 90, 238, 10.1016/j.exer.2009.10.011
Ishibashi, 2000, Up-regulation of crystallin mRNAs in form-deprived chick eyes, Exp. Eye Res., 70, 153, 10.1006/exer.1999.0765
Subramanian, 2005, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A., 102, 15545, 10.1073/pnas.0506580102
Lenhart, 2022, Current management of infantile cataracts, Surv. Ophthalmol., 67, 1476, 10.1016/j.survophthal.2022.03.005
Meier, 2017, Unilateral amblyopia affects two eyes: fellow eye deficits in amblyopia, Invest. Ophthalmol. Vis. Sci., 58, 1779, 10.1167/iovs.16-20964
Mitchell, 2022, Critical periods in vision revisited, Annu Rev. Vis. Sci., 8, 291, 10.1146/annurev-vision-090721-110411
Lee, 2006, Dark-rearing-induced reduction of GABA and GAD and prevention of the effect by BDNF in the mouse retina, Eur. J. Neurosci., 24, 2118, 10.1111/j.1460-9568.2006.05078.x
Di Marco, 2009, Permanent functional reorganization of retinal circuits induced by early long-term visual deprivation, J. Neurosci., 29, 13691, 10.1523/JNEUROSCI.3854-09.2009
P. O, 1990, Development redistribution of photoreceptors across the Macaca nemestrina (pigtail macaque) retina, J. Comp. Neurol., 298
Young, 1984, Cell death during differentiation of the retina in the mouse, J. Comp. Neurol., 229, 362, 10.1002/cne.902290307
Esposito Veneruso, 2017, Developmental visual deprivation: long term effects on human cone driven retinal function, Graefes Arch. Clin. Exp. Ophthalmol., 255, 2481, 10.1007/s00417-017-3780-0
Saari, 2012, Vitamin A metabolism in rod and cone visual cycles, Annu. Rev. Nutr., 32, 125, 10.1146/annurev-nutr-071811-150748
Chen, 2018, Potential mutations in Chinese pathologic myopic patients and contributions to phenotype, Curr. Mol. Med., 18, 689, 10.2174/1566524019666190211120016
Verhoeven, 2013, Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia, Nat. Genet., 45, 314, 10.1038/ng.2554
Zhou, 2020, Increased choroidal blood perfusion can inhibit form deprivation myopia in Guinea pigs, Invest. Ophthalmol. Vis. Sci., 61, 25, 10.1167/iovs.61.13.25
He, 2017, Analysis of factors associated with the ocular features of congenital cataract children in the Shanghai pediatric cataract study, J. Ophthalmol., 2017, 8647435, 10.1155/2017/8647435
Cui, 2020, Transcriptomic analysis of the developmental similarities and differences between the native retina and retinal organoids, Invest. Ophthalmol. Vis. Sci., 61, 6, 10.1167/iovs.61.3.6
Dahlmann-Noor, 2022, Shining a light on foveal development after congenital cataract surgery, Ann. Transl. Med., 10, 1045, 10.21037/atm-2022-31
Kudryavtseva, 2016, Mitochondrial dysfunction and oxidative stress in aging and cancer, Oncotarget., 7, 44879, 10.18632/oncotarget.9821
Sreekumar, 2021, Glutathione metabolism and the novel role of mitochondrial GSH in retinal degeneration, Antioxidants (Basel)., 10, 661, 10.3390/antiox10050661
Domazou, 2012, Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress, Free Radic. Biol. Med., 53, 1565, 10.1016/j.freeradbiomed.2012.08.005
Tokarz, 2013, Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD), Biogerontology., 14, 461, 10.1007/s10522-013-9463-2
Osborne, 2013, Maintenance of retinal ganglion cell mitochondrial functions as a neuroprotective strategy in glaucoma, Curr. Opin. Pharmacol., 13, 16, 10.1016/j.coph.2012.09.002
Kaarniranta, 2020, Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration, Prog. Retin. Eye Res., 79, 10.1016/j.preteyeres.2020.100858
Ballatori, 2009, Glutathione dysregulation and the etiology and progression of human diseases, Bchm., 390, 191, 10.1515/BC.2009.033
Trachsel-Moncho, 2018, Oxidative stress and autophagy-related changes during retinal degeneration and development, Cell Death Dis., 9, 812, 10.1038/s41419-018-0855-8
Beyer, 2022, Loss of fiber cell communication may contribute to the development of cataracts of many different etiologies, Front. Physiol., 13, 10.3389/fphys.2022.989524
Shen, 2019, Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics, Nat. Commun., 10, 1516, 10.1038/s41467-019-09550-x