Conformational Transition of Glycoprotein Ibα Mutants in Flow Molecular Dynamics Simulation
Tóm tắt
Glycoprotein Ibα (GPIbα) interacts with von Willebrand factor (VWF) inducing the tethering of platelets to injured vessel walls and subsequent hemostasis process. We have previously shown that the conformation of the β-switch region of GPIbαN can be regulated by flow. Flow induces a loop-to-β-hairpin conformational change in this region, which is a suggested mechanism for the flow-enhanced binding of GPIbα to VWF-A1. To further evaluate the mechanism and obtain more complete evidences, here we performed flow molecular dynamics simulations of wild type and a number of mutants of the β-switch. The results demonstrate that the gain-of-function mutations G233V, D235V, and K237V promote the conformational transition toward β-hairpin, while the loss-of-function mutation Q232V impedes the transition. The promotion is caused mainly by the improved polarity similarity of the paired residues on the β-hairpin, and also by the decreased flexibility of one strand of the β-switch. The gain-of-function mutations exert the influence locally, affecting only hydrogen bonds near the mutated residues. The impediment of the loss-of-function mutant may be non-essential hydrophobic interactions blocking the conformational change.
Tài liệu tham khảo
Ambroggio, X. I., and B. Kuhlman. Design of protein conformational switches. Curr. Opin. Struct. Biol. 16(4):525–530, 2006.
Arya, M., A. B. Kolomeisky, G. M. Romo, M. A. Cruz, J. A. Lopez, and B. Anvari. Dynamic force spectroscopy of glycoprotein Ib–IX and von Willebrand factor. Biophys. J. 88(6):4391–4401, 2005.
Awasthi, S. K., S. C. Shankaramma, S. Raghothama, and P. Balaram. Solvent-induced beta-hairpin to helix conformational transition in a designed peptide. Biopolymers 58(5):465–476, 2001.
Blanco, F., M. Ramirez-Alvarado, and L. Serrano. Formation and stability of beta-hairpin structures in polypeptides. Curr. Opin. Struct. Biol. 8(1):107–111, 1998.
Buck, M., S. Bouguet-Bonnet, R. W. Pastor, and A. D. MacKerell. Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys. J. 90(4):L36–L38, 2006.
Chen, Z. Z., J. H. Lou, C. Zhu, and K. Schulten. Flow-induced structural transition in the beta-switch region of glycoprotein Ib. Biophys. J. 95(3):1303–1313, 2008.
Doggett, T. A., G. Girdhar, A. Lawshe, J. L. Miller, I. J. Laurenzi, S. L. Diamond, and T. G. Diacovo. Alterations in the intrinsic properties of the GPIb alpha-VWF tether bond define the kinetics of the platelet-type von Willebrand disease mutation, Gly233Val. Blood 102(1):152–160, 2003.
Doggett, T. A., G. Girdhar, A. Lawshe, D. W. Schmidtke, I. J. Laurenzi, S. L. Diamond, and T. G. Diacovo. Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the GPIb alpha-vWF tether bond. Biophys. J. 83(1):194–205, 2002.
Dong, J. F., A. J. Schade, G. M. Romo, R. K. Andrews, S. Gao, L. V. McIntire, and J. A. Lopez. Novel gain-of-function mutations of platelet glycoprotein Ib alpha by valine mutagenesis in the Cys(209)–Cys(24)8 disulfide loop. J. Biol. Chem. 275(36):27663–27670, 2000.
Du, X. P. Signaling and regulation of the platelet glycoprotein Ib–IX–V complex. Curr. Opin. Hematol. 14(3):262–269, 2007.
Du, D. G., Y. J. Zhu, C. Y. Huang, and F. Gai. Understanding the key factors that control the rate of beta-hairpin folding. Proc. Natl Acad. Sci. USA 101(45):15915–15920, 2004.
Dumas, J. J., R. Kumar, T. McDonagh, F. Sullivan, M. L. Stahl, W. S. Somers, and L. Mosyak. Crystal structure of the wild-type von Willebrand factor A1-glycoprotein Ib alpha complex reveals conformation differences with a complex bearing von Willebrand disease mutations. J. Biol. Chem. 279(22):23327–23334, 2004.
Fukuda, K., T. Doggett, I. J. Laurenzi, R. C. Liddington, and T. G. Diacovo. The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation. Nat. Struct. Mol. Biol. 12(2):152–159, 2005.
Furie, B., and B. C. Furie. Mechanisms of disease: mechanisms of thrombus formation. N. Engl. J. Med. 359(9):938–949, 2008.
Griffiths-Jones, S. R., A. J. Maynard, and M. S. Searle. Dissecting the stability of a beta-hairpin peptide that folds in water: NMR and molecular dynamics analysis of the beta-turn and beta-strand contributions to folding. J. Mol. Biol. 292(5):1051–1069, 1999.
Huizinga, E. G., S. Tsuji, R. A. P. Romijn, M. E. Schiphorst, P. G. de Groot, J. J. Sixma, and P. Gros. Structures of glycoprotein Ib alpha and its complex with von Willebrand factor A1 domain. Science 297(5584):1176–1179, 2002.
Humphrey, W., A. Dalke, and K. Schulten. VMD: visual molecular dynamics. J. Mol. Graph. 14(1):27–38, 1996.
Kabsch, W., and C. Sander. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637, 1983.
Kumar, R. A., J. F. Dong, J. A. Thaggard, M. A. Cruz, J. A. Lopez, and L. V. McIntire. Kinetics of GPIbalpha-vWF-A1 tether bond under flow: effect of GPIbalpha mutations on the association and dissociation rates. Biophys. J. 85(6):4099–4109, 2003.
Lou, J. Z., and C. Zhu. Flow induces loop-to-beta-hairpin transition on the beta-switch of platelet glycoprotein Ib alpha. Proc. Natl Acad. Sci. USA 105(37):13847–13852, 2008.
Lovell, S. C., I. W. Davis, W. B. Arendall, III, P. I. de Bakker, J. M. Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50(3):437–450, 2003.
MacKerell, A. Jr., D. Bashford, M. Bellott, R. Dunbrack, Jr., J. Evanseck, M. Field, S. Fischer, J. Gao, H. Guo, and S. Ha. Self-consistent parameterization of biomolecules for molecular modeling and condensed phase simulations. FASEB J. 6(1):A143, 1992.
MacKerell, A. D., D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18):3586–3616, 1998.
Matsubara, Y., M. Murata, K. Sugita, and Y. Ikeda. Identification of a novel point mutation in platelet glycoprotein Ib alpha Gly to Ser at residue 233, in a Japanese family with platelet-type von Willebrand disease. J. Thromb. Haemost. 1(10):2198–2205, 2003.
Miller, J. L., and A. Castella. Platelet-type von Willebrand’s disease: characterization of a new bleeding disorder. Blood 60(3):790–794, 1982.
Moriki, T., M. Murata, T. Kitaguchi, H. Anbo, M. Handa, K. Watanabe, H. Takahashi, and Y. Ikeda. Expression and functional characterization of an abnormal platelet membrane glycoprotein Ib alpha (Met(239) → Val) reported in patients with platelet-type von Willebrand disease. Blood 90(2):698–705, 1997.
Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16):1781–1802, 2005.
Ramachandran, G. N., and V. Sasisekharan. Conformation of polypeptides and proteins. Adv. Protein Chem. 23:283–438, 1968.
Richardson, J. S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34:167–339, 1981.
Ruggeri, Z. M., F. I. Pareti, P. M. Mannucci, N. Ciavarella, and T. S. Zimmerman. Heightened interaction between platelets and factor VIII/von Willebrand factor in a new subtype of von Willebrand’s disease. N. Engl. J. Med. 302(19):1047–1051, 1980.
Russell, S. D., and G. J. Roth. Pseudo-von Willebrand disease: a mutation in the platelet glycoprotein Ib alpha gene associated with a hyperactive surface receptor. Blood 81(7):1787–1791, 1993.
Smith, D. K., P. Radivojac, Z. Obradovic, A. K. Dunker, and G. Zhu. Improved amino acid flexibility parameters. Protein Sci. 12(5):1060–1072, 2003.
Tait, A. S., S. L. Cranmer, S. P. Jackson, I. W. Dawes, and B. H. Chong. Phenotype changes resulting in high-affinity binding of von Willebrand factor to recombinant glycoprotein Ib–IX: analysis of the platelet-type von Willebrand disease mutations. Blood 98(6):1812–1818, 2001.
Varughese, K. I., Z. M. Ruggeri, and R. Celikel. Platinum-induced space-group transformation in crystals of the platelet glycoprotein Ib alpha N-terminal domain. Acta Crystallogr. D Biol. Crystallogr. 60:405–411, 2004.
Yago, T., J. Lou, T. Wu, J. Yang, J. J. Miner, L. Coburn, J. A. Lopez, M. A. Cruz, J. F. Dong, L. V. McIntire, R. P. McEver, and C. Zhu. Platelet glycoprotein lb alpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Invest. 118(9):3195–3207, 2008.
Zou, X. Q., Y. X. Liu, Z. Z. Chen, G. I. Cardenas-Jiron, and K. Schulten. Flow-induced beta-hairpin folding of the glycoprotein Ib alpha beta-switch. Biophys. J. 99(4):1182–1191, 2010.