Confocal nonlinear optical imaging on hexagonal boron nitride nanosheets

PhotoniX - Tập 4 - Trang 1-16 - 2023
Gwanjin Lee1, Konkada Manattayil Jyothsna2, Jonghoo Park3, JaeDong Lee1, Varun Raghunathan2, Hyunmin Kim4,5
1Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
2Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
3School of Electronics Engineering, Kyungpook National University, Daegu, Republic of Korea
4Division of Biotechnology, DGIST, Daegu, Republic of Korea
5Department of Interdisciplinary Engineering, DGIST, Daegu, Republic of Korea

Tóm tắt

Optical microscopy with optimal axial resolution is critical for precise visualization of two-dimensional flat-top structures. Here, we present sub-diffraction-limited ultrafast imaging of hexagonal boron nitride (hBN) nanosheets using a confocal focus-engineered coherent anti-Stokes Raman scattering (cFE-CARS) microscopic system. By incorporating a pinhole with a diameter of approximately 30 μm, we effectively minimized the intensity of side lobes induced by circular partial pi-phase shift in the wavefront (diameter, d0) of the probe beam, as well as nonresonant background CARS intensities. Using axial-resolution-improved cFE-CARS (acFE-CARS), the achieved axial resolution is 350 nm, exhibiting a 4.3-folded increase in the signal-to-noise ratio compared to the previous case with 0.58 d0 phase mask. This improvement can be accomplished by using a phase mask of 0.24 d0. Additionally, we employed nondegenerate phase matching with three temporally separable incident beams, which facilitated cross-sectional visualization of highly-sample-specific and vibration-sensitive signals in a pump-probe fashion with subpicosecond time resolution. Our observations reveal time-dependent CARS dephasing in hBN nanosheets, induced by Raman-free induction decay (0.66 ps) in the 1373 cm−1 mode.

Tài liệu tham khảo

Caldwell JD, Aharonovich I, Cassabois G, Edgar JH, Gil B. Photonics with hexagonal boron nitride. Nat Rev Mater. 2019;4:552–67. https://doi.org/10.1038/s41578-019-0124-1. Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney AP, Gholinia A, Watanabe K, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater. 2015;14:301–6. https://doi.org/10.1038/nmat4205. Xu S, Wu Z, Lu H, Han Y, Long G, Chen X, et al. Universal low-temperature Ohmic contacts for quantum transport in transition metal dichalcogenides. 2DMater. 2016;3:021007. https://doi.org/10.1088/2053-1583/3/2/021007. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol. 2010;5:722–6. https://doi.org/10.1038/nnano.2010.172. Wang L, Meric I, Huang PY, Gao Q, Gao Y, Tran H, et al. One-dimensional electrical contact to a two-dimensional material. Science. 2013;342:614–7. https://doi.org/10.1126/science.1244358. Jia Y, Zhao H, Guo Q, Wang X, Wang H, Xia F. Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures. ACS Photonics. 2015;2:907–12. https://doi.org/10.1021/acsphotonics.5b00099. Basov DN, Fogler MM, García de Abajo FJ. Polaritons in van der Waals materials. Science. 2016;354:6309. https://doi.org/10.1126/science.aag1992. Dai S, Ma Q, Liu MK, Andersen T, Fei Z, Goldflam MD, et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol. 2015;10:682–6. https://doi.org/10.1038/nnano.2015.131. Low T, Chaves A, Caldwell JD, Kumar A, Fang NX, Avouris P, et al. Polaritons in layered two-dimensional materials. Nat Mater. 2017;16:182–94. https://doi.org/10.1038/nmat4792. Bourrellier R, Meuret S, Tararan A, Stéphan O, Kociak M, Tizei LHG, Zobelli A. Bright UV single photon emission at point defects in h-BN. Nano Lett. 2016;16:4317–21. https://doi.org/10.1021/acs.nanolett.6b01368. Kim S, Fröch JE, Christian J, Straw M, Bishop J, Totonjian D, et al. Photonic crystal cavities from hexagonal boron nitride. Nat Commun. 2018;9:2623. https://doi.org/10.1038/s41467-018-05117-4. Song S-B, Yoon S, Kim SY, Yang S, Seo S-Y, Cha S, et al. Deep-ultraviolet electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures. Nat Commun. 2021;12:7134. https://doi.org/10.1038/s41467-021-27524-w. Tran TT, Bray K, Ford MJ, Toth M, Aharonovich I. Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol. 2016;11:37–41. https://doi.org/10.1038/nnano.2015.242. Tran TT, Elbadawi C, Totonjian D, Lobo CJ, Grosso G, Moon H, et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano. 2016;10:7331–8. https://doi.org/10.1021/acsnano.6b03602. Jungwirth NR, Calderon B, Ji Y, Spencer MG, Flatté ME, Fuchs GD. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett. 2016;16:6052–7. https://doi.org/10.1021/acs.nanolett.6b01987. Trovatello C, Marini A, Xu X, Lee C, Liu F, Curreli N, et al. Optical parametric amplification by monolayer transition metal dichalcogenides. Nat Photonics. 2021;15:6–10. https://doi.org/10.1038/s41566-020-00728-0. Li Y, Rao Y, Mak KF, You Y, Wang S, Dean CR, Heinz TF. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013;13:3329–33. https://doi.org/10.1021/nl401561r. Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater. 2004;3:404–9. https://doi.org/10.1038/nmat1134. Museur L, Brasse G, Pierret A, Maine S, Attal-Tretout B, Ducastelle F, et al. Exciton optical transitions in a hexagonal boron nitride single crystal. Phys Stat Solidi Rapid Res Lett. 2011;5:214–6. https://doi.org/10.1002/pssr.201105190. Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics. 2016;10:262–6. https://doi.org/10.1038/nphoton.2015.277. Popkova AA, Antropov IM, Fröch JE, Kim S, Aharonovich I, Bessonov VO, et al. Optical third-harmonic generation in hexagonal boron nitride thin films. ACS Photonics. 2021;8:824–31. https://doi.org/10.1021/acsphotonics.0c01759. Ling J, Miao X, Sun Y, Feng Y, Zhang L, Sun Z, Ji M. Vibrational imaging and quantification of two-dimensional hexagonal boron nitride with stimulated raman scattering. ACS Nano. 2019;13:14033–40. https://doi.org/10.1021/acsnano.9b06337. Lafetá L, Cadore AR, Mendes-De-Sa TG, Watanabe K, Taniguchi T, Campos LC, et al. Anomalous nonlinear optical response of graphene near phonon resonances. Nano Lett. 2017;17:3447–51. https://doi.org/10.1021/acs.nanolett.7b00329. Armstrong JA, Bloembergen N, Ducuing J, Pershan PS. Interactions between light waves in a nonlinear dielectric. Phys Rev. 1962;127:1918–39. https://doi.org/10.1103/PhysRev.127.1918. Cheng J-X, Volkmer A, Xie XS. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. J Opt Soc Am B. 2002;19:1363–75. https://doi.org/10.1364/josab.19.001363. Hempel F, Reitzig S, Rüsing M, Eng LM. Broadband coherent anti-stokes raman scattering for crystalline materials. Phys Rev B. 2021;104:224308. https://doi.org/10.1103/PhysRevB.104.224308. Dhakal KP, Kim H, Lee S, Kim Y, Lee JD, Ahn JH. Probing the upper band gap of atomic rhenium disulfide layers. Light Sci Appl. 2018;7:98. https://doi.org/10.1038/s41377-018-0100-3. Hendry E, Hale PJ, Moger J, Savchenko AK, Mikhailov SA. Coherent nonlinear optical response of graphene. Phys Rev Lett. 2010;105:097401. https://doi.org/10.1103/PhysRevLett.105.097401. Lotem H, Lynch RT, Bloembergen N. Interference between Raman resonances in four-wave difference mixing. Phys Rev A. 1976;14:1748–55. https://doi.org/10.1103/physreva.14.1748. Gorbachev RV, Riaz I, Nair RR, Jalil R, Britnell L, Belle BD, et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small. 2011;7:465–8. https://doi.org/10.1002/smll.201001628. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P. Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett. 2002;88:077402. https://doi.org/10.1103/PhysRevLett.88.077402. Lee YJ, Cicerone MT. Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy. Appl Phys Lett. 2008;92:041108. https://doi.org/10.1063/1.2838750. Lee YJ, Parekh SH, Fagan JA, Cicerone MT. Phonon dephasing and population decay dynamics of the G-band of semiconducting single-wall carbon nanotubes. Phys Rev B. 2010;82:165432. https://doi.org/10.1103/PhysRevB.82.165432. Koivistoinen J, Myllyperkiö P, Pettersson M. Time-resolved coherent anti-stokes raman scattering of graphene: dephasing dynamics of optical phonon. J Phys Chem Lett. 2017;8:4108–12. https://doi.org/10.1021/acs.jpclett.7b01711. Xu Q-H, Ma Y-Z, Fleming GR. Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method. Chem Phys Lett. 2001;338:254–62. https://doi.org/10.1016/s0009-2614(01)00281-0. Seferyan HY, Nasr MB, Senekerimyan V, Zadoyan R, Collins P, Apkarian VA. Transient grating measurements of excitonic dynamics in single-walled carbon nanotubes: The dark excitonic bottleneck. Nano Lett. 2006;6:1757–60. https://doi.org/10.1021/nl061646d. Zeytunyan A, Crampton KT, Zadoyan R, Apkarian VA. Supercontinuum-based three-color three-pulse time-resolved coherent anti-Stokes Raman scattering. Opt Express. 2015;23:24019–28. https://doi.org/10.1364/OE.23.024019. Lee G, Jyothsna KM, Lim H, Park J, Lee J, Raghunathan V, Kim H. Sub 100 nm resolution confocal focus-engineered coherent anti-Stokes Raman scattering microscopy under non-degenerate pumping condition. Opt Lasers Eng. 2022;158:107142. https://doi.org/10.1016/j.optlaseng.2022.107142. Beams R, Woodcock JW, Gilman JW, Stranick SJ. Phase mask-based multimodal superresolution microscopy. Photonics. 2017;4:39. https://doi.org/10.3390/photonics4030039. Kim H, Bryant GW, Stranick SJ. Superresolution four-wave mixing microscopy. Opt Express. 2012;20:6042–51. https://doi.org/10.1364/OE.20.006042. Hashimoto M, Araki T. Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy. J Opt Soc Am A. 2001;18:771–6. https://doi.org/10.1364/JOSAA.18.000771. Gong L, Zheng W, Ma Y, Huang Z. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat Photonics. 2020;14:115–22. https://doi.org/10.1038/s41566-019-0535-y. Mehravar S, Cromey B, Kieu K. Characterization of multiphoton microscopes by the nonlinear knife-edge technique. Appl Opt. 2020;59:G219–24. https://doi.org/10.1364/AO.391881. Brizuela F, Wang Y, Brewer CA, Pedaci F, Chao W, Anderson EH, et al. Microscopy of extreme ultraviolet lithography masks with 13.2 nm tabletop laser illumination. Opt Lett. 2009;34:271–3. https://doi.org/10.1364/ol.34.000271. Novotny L, Hecht B. Principles of nano-optics. Ch. 4. Cambridge University Press; 2006. Latychevskaia T. Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes. Appl Opt. 2019;58:3597–603. https://doi.org/10.1364/AO.58.003597. Potma EO, Evans CL, Xie XS. Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging. Opt Lett. 2006;31:241–3. https://doi.org/10.1364/ol.31.000241. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 2008;322:1857–61. https://doi.org/10.1126/science.1165758. Virga A, Ferrante C, Batignani G, De Fazio D, Nunn ADG, Ferrari AC, et al. Coherent anti-Stokes Raman spectroscopy of single and multi-layer graphene. Nat Commun. 2019;10:3658. https://doi.org/10.1038/s41467-019-11165-1. Evans CL, Xie XS. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem. 2008;1:883–909. https://doi.org/10.1146/annurev.anchem.1.031207.112754. Ariunbold GO, Altangerel N. Quantitative interpretation of time-resolved coherent anti-Stokes Raman spectroscopy with all Gaussian pulses. J Raman Spectrosc. 2017;48:104–7. https://doi.org/10.1002/jrs.4987. Zhang X, Li Y, Mu W, Bai W, Sun X, Zhao M, et al. Advanced tape-exfoliated method for preparing large-area 2D monolayers: a review. 2D Mater. 2021;8:032002. Song J, Kam F-Y, Png R-Q, Seah W-L, Zhuo J-M, Lim G-K, et al. A general method for transferring graphene onto soft surfaces. Nat Nanotechnol. 2013;8:356–62. https://doi.org/10.1038/nnano.2013.63. The Elk Code. https://elk.sourceforge.io/. Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett. 2009;102:226401. https://doi.org/10.1103/PhysRevLett.102.226401. Schuster R, Habenicht C, Ahmad M, Knupfer M, Büchner B. Direct observation of the lowest indirect exciton state in the bulk of hexagonal boron nitride. Phys Rev B. 2018;97:041201(R). https://doi.org/10.1103/PhysRevB.97.041201. Kim J-H, Van Le Q, Nguyen TP, Lee TH, Jang HW, Yun WS, et al. Graphene-mediated enhanced Raman scattering and coherent light lasing from CsPbI3 perovskite nanorods. Nano Energy. 2020;70:104497. https://doi.org/10.1016/j.nanoen.2020.104497.