Conductive Nb-doped TiO2 thin films with whole visible absorption to degrade pollutants

Catalysis Science and Technology - Tập 8 Số 5 - Trang 1357-1365
Xiaoyang Yang1,2,3,4, Yuxin Min1,2,3,4, Sibai Li1,2,3,4, Dawei Wang1,2,3,4, Zongwei Mei1,2,3,4, Jun Liang1,2,3,4, Feng Pan1,2,3,4
1P. R. China
2Peking university, Shenzhen graduate school
3School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen 518055, P. R. China
4Shenzhen 518055

Tóm tắt

Niobium-doping makes both intrinsic UV absorption and UV-vis-IR free-carrier absorption occur in TiO2 and improves the photocatalytic performance.

Từ khóa


Tài liệu tham khảo

Low, 2017, Appl. Surf. Sci., 392, 658, 10.1016/j.apsusc.2016.09.093

Khin, 2012, Energy Environ. Sci., 5, 8075, 10.1039/c2ee21818f

Pelaez, 2012, Appl. Catal., B, 125, 331, 10.1016/j.apcatb.2012.05.036

Schneider, 2014, Chem. Rev., 114, 9919, 10.1021/cr5001892

Liu, 2015, Science, 347, 970, 10.1126/science.aaa3145

Clavero, 2014, Nat. Photonics, 8, 95, 10.1038/nphoton.2013.238

Wang, 2009, Inorg. Chem., 48, 1105, 10.1021/ic8018138

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Asahi, 2014, Chem. Rev., 114, 9824, 10.1021/cr5000738

Choi, 2016, ACS Catal., 6, 2745, 10.1021/acscatal.6b00104

Feng, 2013, J. Am. Chem. Soc., 135, 1607, 10.1021/ja312205c

Yang, 2009, Appl. Catal., B, 91, 657, 10.1016/j.apcatb.2009.07.006

Asahi, 2001, Science, 293, 269, 10.1126/science.1061051

Yue, 2017, J. Mater. Chem. A, 5, 10591, 10.1039/C7TA02655B

Yu, 2014, J. Am. Chem. Soc., 136, 8839, 10.1021/ja5044787

Mushtaq, 2016, Adv. Funct. Mater., 26, 6995, 10.1002/adfm.201602315

Khan, 2017, Appl. Catal., B, 206, 520, 10.1016/j.apcatb.2017.01.039

Kong, 2017, Dalton Trans., 46, 15363, 10.1039/C7DT03057F

Wang, 2016, J. Mater. Chem. A, 4, 6926, 10.1039/C5TA08202A

Kong, 2015, J. Phys. Chem. C, 119, 16623, 10.1021/acs.jpcc.5b03448

Bhachu, 2014, Adv. Funct. Mater., 24, 5075, 10.1002/adfm.201400338

Joshi, 2013, J. Am. Ceram. Soc., 96, 2623, 10.1111/jace.12336

Yang, 2012, Solid State Sci., 14, 139, 10.1016/j.solidstatesciences.2011.11.010

Michalow, 2012, Environ. Sci. Pollut. Res., 19, 3696, 10.1007/s11356-012-0953-6

Mattsson, 2006, J. Phys. Chem. B, 110, 1210, 10.1021/jp055656z

Yang, 2017, ACS Appl. Mater. Interfaces, 9, 29021, 10.1021/acsami.7b06792

Yang, 2008, Nature, 453, 638, 10.1038/nature06964

Stefanov, 2015, J. Mater. Chem. A, 3, 17369, 10.1039/C5TA04362J

Wang, 2015, RSC Adv., 5, 9861, 10.1039/C4RA13705A

Zhang, 2011, J. Alloys Compd., 509, 9178, 10.1016/j.jallcom.2011.06.105

Schleife, 2011, Phys. Rev. Lett., 107, 236405, 10.1103/PhysRevLett.107.236405

Kioupakis, 2010, Phys. Rev. B: Condens. Matter Mater. Phys., 81, 2, 10.1103/PhysRevB.81.241201

Fan, 1967, Semicond. Semimetals, 3, 405, 10.1016/S0080-8784(08)60321-X

Peelaers, 2012, Appl. Phys. Lett., 100, 2010, 10.1063/1.3671162

Liu, 2010, ACS Nano, 4, 5373, 10.1021/nn100785j

Jellison, 2003, J. Appl. Phys., 93, 9537, 10.1063/1.1573737

Furubayashi, 2005, Appl. Phys. Lett., 86, 252101, 10.1063/1.1949728

Hirose, 2009, Phys. Rev. B: Condens. Matter Mater. Phys., 79, 165108, 10.1103/PhysRevB.79.165108

Zhuang, 2010, Langmuir, 26, 9686, 10.1021/la100302m

Lee, 2012, J. Phys. Chem. C, 116, 18591, 10.1021/jp303099w

Gholamkhass, 2003, Inorg. Chem., 42, 2919, 10.1021/ic0341237

Chen, 2010, Chem. Soc. Rev., 39, 4206, 10.1039/b921692h

Huang, 2015, J. Mater. Chem. A, 3, 2825, 10.1039/C4TA05332J

Chen, 2014, Chem. Commun., 50, 11891, 10.1039/C3CC49251F

Blossey, 2003, Nat. Mater., 2, 301, 10.1038/nmat856

Powell, 2016, Chem. Mater., 28, 1369, 10.1021/acs.chemmater.5b04419

Zhao, 2013, Chem. Commun., 49, 8958, 10.1039/c3cc44547j

Rahal, 2011, Appl. Catal., B, 104, 361, 10.1016/j.apcatb.2011.03.005