Nanosợi Polyaniline Dẫn Điện và Ứng Dụng của Nó trong Cảm Biến Chất Hóa
Tóm tắt
Nanosợi polyaniline một chiều là một polymer dẫn điện có thể được sử dụng làm lớp hoạt động cho các cảm biến, trong đó sự thay đổi tính dẫn điện có thể được sử dụng để phát hiện các loài hóa học hoặc sinh học. Trong bài tổng quan này, các tính chất cơ bản của nanosợi polyaniline, bao gồm cấu trúc hóa học, hóa học oxy hóa-khử, và phương pháp tổng hợp, được thảo luận. Một khảo sát tài liệu toàn diện về các cảm biến dựa trên resistor hóa học/cảm điện động dựa trên nanosợi polyaniline được trình bày và các phát triển gần đây trong cảm biến dựa trên nanosợi polyaniline được tóm tắt. Cuối cùng, những hạn chế hiện tại và triển vọng tương lai của nanosợi polyaniline được thảo luận.
Từ khóa
#polyaniline #nanosợi dẫn điện #cảm biến chất hóa #hóa học oxy hóa-khử #tính dẫn điệnTài liệu tham khảo
Bangar, 2009, Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker, Anal. Chem., 81, 2168, 10.1021/ac802319f
Virji, 2004, Polyaniline nanofiber gas sensors: Examination of response mechanisms, Nano Lett., 4, 491, 10.1021/nl035122e
Zhang, 2006, Synthesis and applications of one-dimensional nano-structured polyaniline: An overview, Mater. Sci. Eng. B, 134, 9, 10.1016/j.mseb.2006.07.037
Mulchandani, 2011, Conducting polymer nanowires-based label-free biosensors, Curr. Opin. Biotechnol., 22, 502, 10.1016/j.copbio.2011.05.508
Baeumner, 2012, Recent progress in the design of nanofiber-based biosensing devices, Lab. Chip, 12, 2612, 10.1039/c2lc21240d
Wang, 2005, Carbon-nanotube based electrochemical biosensors: A review, Electroanalysis, 17, 7, 10.1002/elan.200403113
Jacobs, 2010, Review: Carbon nanotube based electrochemical sensors for biomolecules, Anal. Chim. Acta, 662, 105, 10.1016/j.aca.2010.01.009
Cui, 2001, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293, 1289, 10.1126/science.1062711
Yogeswaran, 2008, A review on the electrochemical sensors and biosensors composed of nanowires as sensing material, Sensors, 8, 290, 10.3390/s8010290
Sunkara, 2001, Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method, Appl. Phys. Lett., 79, 1546, 10.1063/1.1401089
Virji, 2006, Hydrogen sensors based on conductivity changes in polyaniline nanofibers, J. Phys. Chem. B, 110, 22266, 10.1021/jp063166g
Wang, 2006, Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system, Chem. Commun., 29, 3075, 10.1039/b604426c
Wang, 2004, Electrochemically fabricated polyaniline nanoframework electrode junctions that function as resistive sensors, Nano Lett., 4, 1693, 10.1021/nl049114p
Kuhn, 2011, Controlling the length and location of in situ formed nanowires by means of microfluidic tools, Lab Chip, 11, 753, 10.1039/C0LC00270D
Hou, 2008, A hydrodynamically focused stream as a dynamic template for site-specific electrochemical micropatterning of conducting polymers, Angew. Chem., 120, 1088, 10.1002/ange.200704264
Schaffhauser, 2010, A microfluidic approach for the formation of conductive nanowires and hollow hybrid structures, Adv. Mater., 22, 2255, 10.1002/adma.200903428
Shirakawa, 1977, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc. Chem. Commun., 1977, 578, 10.1039/c39770000578
Macdiarmid, 1987, Polyaniline: A new concept in conducting polymers, Synth. Met., 18, 285, 10.1016/0379-6779(87)90893-9
Sergeyeva, 1996, Polyaniline label-based conductometric sensor for IgG detection, Sens. Actuators B, 34, 283, 10.1016/S0925-4005(97)80006-8
Gerard, 2002, Application of conducting polymers to biosensors, Biosens. Bioelectron., 17, 345, 10.1016/S0956-5663(01)00312-8
Dhand, 2011, Recent advances in polyaniline based biosensors, Biosens. Bioelectron., 26, 2811, 10.1016/j.bios.2010.10.017
Lange, 2008, Conducting polymers in chemical sensors and arrays, Anal. Chim. Acta, 614, 1, 10.1016/j.aca.2008.02.068
Reddinger, 1999, Molecular Engineering of π-Conjugated Polymers, Advances in Polymer Science, Volume 145, 57, 10.1007/3-540-70733-6_2
MacDiarmid, 1989, Polyanilines: A novel class of conducting polymers, Faraday Discuss. Chem. Soc., 88, 317, 10.1039/dc9898800317
Syed, 1991, Review: Polyaniline—A novel polymeric material, Talanta, 38, 815, 10.1016/0039-9140(91)80261-W
Huang, 1986, Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes, J. Chem. Soc. Faraday Trans. 1, 82, 2385, 10.1039/f19868202385
Bhadra, 2009, Progress in preparation, processing and applications of polyaniline, Prog. Polym. Sci., 34, 783, 10.1016/j.progpolymsci.2009.04.003
Stejskal, 2010, Polyaniline nanostructures and the role of aniline oligomers in their formation, Prog. Polym. Sci., 35, 1420, 10.1016/j.progpolymsci.2010.07.006
Tran, 2008, Toward an understanding of the formation of conducting polymer nanofibers, ACS Nano, 2, 1841, 10.1021/nn800272z
Gupta, 2005, Large-area network of polyaniline nanowires prepared by potentiostatic deposition process, Electrochem. Commun., 7, 995, 10.1016/j.elecom.2005.07.008
Macdiarmid, 1985, Electrochemical characteristics of “polyaniline” cathodes and anodes in aqueous electrolytes, Mol. Cryst. Liq. Cryst., 121, 187, 10.1080/00268948508074859
Gupta, 2006, High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline, Mater. Lett., 60, 1466, 10.1016/j.matlet.2005.11.047
Zhiani, 2012, Performing of novel nanostructure MEA based on polyaniline modified anode in direct methanol fuel cell, J. Power Sources, 210, 42, 10.1016/j.jpowsour.2012.02.081
Kelly, 2013, Polyaniline: Application as solid state electrochromic in a flexible textile display, Displays, 34, 1, 10.1016/j.displa.2012.10.001
Anderson, 1991, Conjugated polymer films for gas separations, Science, 252, 1412, 10.1126/science.252.5011.1412
Chang, 2012, Novel anticorrosion coatings prepared from polyaniline/graphene composites, Carbon, 50, 5044, 10.1016/j.carbon.2012.06.043
Focke, 1987, Influence of oxidation state, pH, and counterion on the conductivity of polyaniline, J. Phys. Chem., 91, 5813, 10.1021/j100306a059
Zhang, 2004, Synthesis of polyaniline nanofibers by “nanofiber seeding”, J. Am. Chem. Soc., 126, 4502, 10.1021/ja031867a
Epstein, 1987, Polaron lattice in highly conducting polyaniline: Theoretical and optical studies, Phys. Rev. Lett., 59, 1464, 10.1103/PhysRevLett.59.1464
Heeger, 2001, Semiconducting and metallic polymers: The fourth generation of polymeric materials, J. Phys. Chem. B, 105, 8475, 10.1021/jp011611w
Ray, 1989, Polyaniline: Protonation/deprotonation of amine and imine sites, Synth. Met., 29, 151, 10.1016/0379-6779(89)90290-7
Nechtschein, 1989, On the nature of the conducting state of polyaniline, Synth. Met., 29, 211, 10.1016/0379-6779(89)90298-1
McManus, 1987, Influence of oxidation and protonation on the electrical conductivity of polyaniline, J. Phys. Chem., 91, 744, 10.1021/j100287a050
Genies, 1985, Redox mechanism and electrochemical behaviour or polyaniline deposits, J. Electroanal. Chem. Interfacial Electrochem., 195, 109, 10.1016/0022-0728(85)80009-7
Lapkowski, 1988, Cyclic voltammetry of polyaniline: Interpretation of the middle peak, J. Electroanal. Chem. Interfacial Electrochem., 249, 97, 10.1016/0022-0728(88)80351-6
Nunziante, 1989, Factors affecting the growth of thick polyaniline films by the cyclic voltammetry technique, Electrochim. Acta, 34, 223, 10.1016/0013-4686(89)87089-6
MacDiarmid, 2001, “Synthetic metals”: A novel role for organic polymers (Nobel lecture), Angew. Chem. Int. Ed., 40, 2581, 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2
Focke, 1988, Conduction mechanisms in polyaniline (emeraldine salt), J. Electroanal. Chem. Interfacial Electrochem., 256, 343, 10.1016/0022-0728(88)87008-6
Saheb, 2011, UV-vis and Raman spectral analysis of polyaniline/gold thin films as a function of applied potential, Anal. Lett., 44, 1206, 10.1080/00032719.2010.511741
Kobayashi, 1984, Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes, J. Electroanal. Chem. Interfacial Electrochem., 177, 281, 10.1016/0022-0728(84)80229-6
Li, 1993, Granular-rod model for electronic conduction in polyaniline, Phys. Rev. B, 47, 1840, 10.1103/PhysRevB.47.1840
Li, 1998, Porous polyaniline films with high conductivity, Synth. Met., 92, 121, 10.1016/S0379-6779(98)80101-X
Mott, N.F., and Davis, E.A. (2012). Electronic Processes in Non-Crystalline Materials, Oxford University Press.
Joo, 1998, Charge transport of the mesoscopic metallic state in partially crystalline polyanilines, Phys. Rev. B, 57, 9567, 10.1103/PhysRevB.57.9567
Ghosh, 1998, Crossover from Mott to Efros-Shklovskii variable-range-hopping conductivity in conducting polyaniline, Synth. Met., 97, 23, 10.1016/S0379-6779(98)00105-2
Sheng, 1973, Hopping conductivity in granular metals, Phys. Rev. Lett., 31, 44, 10.1103/PhysRevLett.31.44
Lin, 2011, Nano approach investigation of the conduction mechanism in polyaniline nanofibers, ACS Nano, 5, 1541, 10.1021/nn103525b
Zhou, 2003, Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm, Appl. Phys. Lett., 83, 3800, 10.1063/1.1622108
Liu, 1999, Enzymatically synthesized conducting polyaniline, J. Am. Chem. Soc., 121, 71, 10.1021/ja982270b
Ma, 2004, Polyaniline nanowires on Si surfaces fabricated with DNA templates, J. Am. Chem. Soc., 126, 7097, 10.1021/ja039621t
Konyushenko, 2006, Evolution of polyaniline nanotubes: The oxidation of aniline in water, J. Phys. Chem. B, 110, 9461, 10.1021/jp057528g
Zhang, 2008, Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions, Macromolecules, 41, 8877, 10.1021/ma801728j
Chiou, 2005, Polyaniline nanofibers prepared by dilute polymerization, Adv. Mater., 17, 1679, 10.1002/adma.200401000
Wei, 1989, A study of the mechanism of aniline polymerization, J. Polym. Sci. Part Polym. Chem., 27, 2385, 10.1002/pola.1989.080270720
Yang, 1992, The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions, J. Electroanal. Chem., 339, 423, 10.1016/0022-0728(92)80466-H
Li, 2009, Polyaniline nanofibers: A unique polymer nanostructure for versatile applications, Acc. Chem. Res., 42, 135, 10.1021/ar800080n
Huang, 2004, Nanofiber formation in the chemical polymerization of aniline: A mechanistic study, Angew. Chem., 116, 5941, 10.1002/ange.200460616
Dias, H.V.R., Wang, X., Rajapakse, R.M.G., and Elsenbaumer, R.L. (2006). A mild, copper catalyzed route to conducting polyaniline. Chem. Commun., 976–978.
Huang, 2004, A general chemical route to polyaniline nanofibers, J. Am. Chem. Soc., 126, 851, 10.1021/ja0371754
Huang, 2003, Polyaniline nanofibers: Facile synthesis and chemical sensors, J. Am. Chem. Soc., 125, 314, 10.1021/ja028371y
Qiang, 2008, Polyaniline nanofibers synthesized by rapid mixing polymerization, Synth. Met., 158, 544, 10.1016/j.synthmet.2008.03.023
Martin, 1995, Template synthesis of electronically conductive polymer nanostructures, Acc. Chem. Res., 28, 61, 10.1021/ar00050a002
Martin, 1994, Nanomaterials: A membrane-based synthetic approach, Science, 266, 1961, 10.1126/science.266.5193.1961
Li, 2010, Rapid polymerization initiated by redox initiator for the synthesis of polyaniline nanofibers, Polymer, 51, 1934, 10.1016/j.polymer.2010.03.004
Kitani, 1987, “Polyaniline”: Formation reaction and structure, Synth. Met., 18, 341, 10.1016/0379-6779(87)90902-7
Liang, 2002, Direct assembly of large arrays of oriented conducting polymer nanowires, Angew. Chem. Int. Ed., 41, 3665, 10.1002/1521-3773(20021004)41:19<3665::AID-ANIE3665>3.0.CO;2-B
Choi, 2000, Electrochemical growth of nanosized conducting polymer wires on gold using molecular templates, Adv. Mater., 12, 1547, 10.1002/1521-4095(200010)12:20<1547::AID-ADMA1547>3.0.CO;2-1
Stilwell, 1988, Electrochemistry of conductive polymers IV electrochemical studies on polyaniline degradation—Product identification and coulometric studies, J. Electrochem. Soc., 135, 2497, 10.1149/1.2095365
Huang, 2002, Polyaniline nanowires by electropolymerization from liquid crystalline phases, J. Mater. Chem., 12, 388, 10.1039/b107499g
Mu, 2008, Spectral characteristics of polyaniline nanostructures synthesized by using cyclic voltammetry at different scan rates, J. Phys. Chem. B, 112, 11558, 10.1021/jp8051517
Diaz, 1980, Electroactive polyaniline films, J. Electroanal. Chem. Interfacial Electrochem., 111, 111, 10.1016/S0022-0728(80)80081-7
Huang, 2003, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol., 63, 2223, 10.1016/S0266-3538(03)00178-7
Reneker, 1996, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 7, 216, 10.1088/0957-4484/7/3/009
Martin, 1990, Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced, Langmuir, 6, 1118, 10.1021/la00096a016
Parthasarathy, 1994, Template-synthesized polyaniline microtubules, Chem. Mater., 6, 1627, 10.1021/cm00046a011
Jackowska, 2008, Hard template synthesis of conducting polymers: A route to achieve nanostructures, J. Solid State Electrochem., 12, 437, 10.1007/s10008-007-0453-7
Xiao, 2003, Electrocatalytic intercalator-induced winding of double-stranded DNA with polyaniline, Chem. Commun., 2003, 1540, 10.1039/b301749d
Fan, 2007, Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps, J. Am. Chem. Soc., 129, 5437, 10.1021/ja067477g
Liu, 1999, Biologically derived water soluble conducting polyaniline, Synth. Met., 101, 738, 10.1016/S0379-6779(98)00208-2
Bergveld, 1970, Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE Trans. Biomed. Eng., BME-17, 70, 10.1109/TBME.1970.4502688
Bergveld, 2003, Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years, Sens. Actuators B, 88, 1, 10.1016/S0925-4005(02)00301-5
Bergveld, 1972, Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology, IEEE Trans. Biomed. Eng., BME-19, 342, 10.1109/TBME.1972.324137
Liu, 2012, Development of a polyaniline nanofiber-based carbon monoxide sensor for hydrogen fuel cell application, Int. J. Hydrog. Energy, 37, 13529, 10.1016/j.ijhydene.2012.06.096
Liu, 2012, Au nanoparticles decorated polyaniline nanofiber sensor for detecting volatile sulfur compounds in expired breath, Sens. Actuators B, 161, 504, 10.1016/j.snb.2011.10.068
Zeng, 2010, Humidity sensors based on polyaniline nanofibres, Sens. Actuators B, 143, 530, 10.1016/j.snb.2009.09.050
Lin, 2012, Polyaniline nanofiber humidity sensor prepared by electrospinning, Sens. Actuators B, 161, 967, 10.1016/j.snb.2011.11.074
Lim, 2010, Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes, Nanotechnology, 21, 075502:1, 10.1088/0957-4484/21/7/075502
Shin, 2010, Graphene/polyaniline nanocomposite for hydrogen sensing, J. Phys. Chem. C, 114, 16168, 10.1021/jp103134u
Shirsat, 2009, Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor, Appl. Phys. Lett., 94, 083502:1, 10.1063/1.3070237
Sadek, 2006, A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite, Nanotechnology, 17, 4488, 10.1088/0957-4484/17/17/034
Sadek, 2007, Polyaniline nanofiber based surface acoustic wave gas sensors-effect of nanofiber diameter on H2 response, IEEE Sens. J., 7, 213, 10.1109/JSEN.2006.883769
Arsat, 2009, Hydrogen gas sensor based on highly ordered polyaniline nanofibers, Sens. Actuators B, 137, 529, 10.1016/j.snb.2009.01.028
Wang, 2012, Constructions of polyaniline nanofiber-based electrochemical sensor for specific detection of nitrite and sensitive monitoring of ascorbic acid scavenging nitrite, Synth. Met., 162, 326, 10.1016/j.synthmet.2011.12.013
Xian, 2006, Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite, Biosens. Bioelectron., 21, 1996, 10.1016/j.bios.2005.09.014
Pal, 2007, Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species, Biosens. Bioelectron., 22, 2329, 10.1016/j.bios.2007.01.013
Li, 2004, Effect of morphology on the response of polyaniline-based conductometric gas sensors: Nanofibers vs. thin films, Electrochem. Solid-State Lett., 7, H44, 10.1149/1.1795053
2003, Polyaniline as a new sensitive layer for gas sensors, Anal. Chim. Acta, 475, 1, 10.1016/S0003-2670(02)01229-1
Sadek, 2007, Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors, Sens. Actuators A, 139, 53, 10.1016/j.sna.2006.11.033
Liao, 2011, Carbon nanotube/polyaniline composite nanofibers: Facile synthesis and chemosensors, Nano Lett., 11, 954, 10.1021/nl103322b
Liao, 2011, Carrier mobility of single-walled carbon nanotube-reinforced polyaniline nanofibers, J. Phys. Chem. C, 115, 16187, 10.1021/jp2053585
Kaner, 2001, Gas, liquid and enantiomeric separations using polyaniline, Synth. Met., 125, 65, 10.1016/S0379-6779(01)00512-4
Liao, 2013, Carbon nanotube-templated polyaniline nanofibers: Synthesis, flash welding and ultrafiltration membranes, Nanoscale, 5, 3856, 10.1039/c3nr00441d
Guillen, 2010, Pore-structure, hydrophilicity, and particle filtration characteristics of polyaniline–polysulfone ultrafiltration membranes, J. Mater. Chem., 20, 4621, 10.1039/b925269j
Blinova, 2012, Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane, J. Membr. Sci., 423–424, 514, 10.1016/j.memsci.2012.09.003
Clark, 1962, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci., 102, 29, 10.1111/j.1749-6632.1962.tb13623.x
White, 1984, Chemical derivatization of an array of three gold microelectrodes with polypyrrole: Fabrication of a molecule-based transistor, J. Am. Chem. Soc., 106, 5375, 10.1021/ja00330a070
Ofer, 1990, Potential dependence of the conductivity of highly oxidized polythiophenes, polypyrroles, and polyaniline: Finite windows of high conductivity, J. Am. Chem. Soc., 112, 7869, 10.1021/ja00178a004
Bartlett, 1994, A microelectrochemical enzyme transistor responsive to glucose, Anal. Chem., 66, 1552, 10.1021/ac00081a031
Bartlett, 1998, An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film, Anal. Chem., 70, 3685, 10.1021/ac971088a
Battaglini, 2000, Covalent attachment of osmium complexes to glucose oxidase and the application of the resulting modified enzyme in an enzyme switch responsive to glucose, Anal. Chem., 72, 502, 10.1021/ac990321x
Forzani, 2004, A conducting polymer nanojunction sensor for glucose detection, Nano Lett., 4, 1785, 10.1021/nl049080l
Yuk, 2009, Performance enhancement of polyaniline-based polymeric wire biosensor, Biosens. Bioelectron., 24, 1348, 10.1016/j.bios.2008.07.079
Alocilja, 2003, A conductometric biosensor for biosecurity, Biosens. Bioelectron., 18, 813, 10.1016/S0956-5663(03)00020-4
Tahir, 2005, Polyaniline synthesis and its biosensor application, Biosens. Bioelectron., 20, 1690, 10.1016/j.bios.2004.08.008
Forzani, 2007, Hybrid amperometric and conductometric chemical sensor based on conducting polymer nanojunctions, Anal. Chem., 79, 5217, 10.1021/ac0703202
Gao, 2007, Detection of nucleic acids using enzyme-catalyzed template-guided deposition of polyaniline, Adv. Mater., 19, 602, 10.1002/adma.200601090
Chang, 2007, Electrochemical DNA biosensor based on conducting polyaniline nanotube array, Anal. Chem., 79, 5111, 10.1021/ac070639m
Rodriguez, 2002, Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline–poly(n-butyl methacrylate) composites, Sens. Actuators B, 85, 19, 10.1016/S0925-4005(02)00045-X
Alocilja, 2003, Fabrication of a disposable biosensor for Escherichia coli O157:H7 detection, IEEE Sens. J., 3, 345, 10.1109/JSEN.2003.815782
Raffa, 2003, A microelectrochemical enzyme transistor based on an n-alkylated poly(aniline) and its application to determine hydrogen peroxide at neutral pH, Anal. Chem., 75, 4983, 10.1021/ac0341620
Yue, 1990, Synthesis of self-doped conducting polyaniline, J. Am. Chem. Soc., 112, 2800, 10.1021/ja00163a051
Yue, 1990, Sulfonic acid ring-substituted polyaniline, a self-doped conducting polymer, Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt., 189, 255
Ghenaatian, 2009, Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor, Synth. Met., 159, 1717, 10.1016/j.synthmet.2009.05.014
Thiemann, 2001, Electropolymerisation and properties of conducting polymers derived from aminobenzenesulphonic acids and from mixtures with aniline, Synth. Met., 125, 445, 10.1016/S0379-6779(01)00502-1
Kamaraj, 2010, Electrosysnthesis of poly(aniline-co-m-amino benzoic acid) for corrosion protection of steel, Mater. Chem. Phys., 122, 123, 10.1016/j.matchemphys.2010.02.061
Lukachova, 2003, Electroactivity of chemically synthesized polyaniline in neutral and alkaline aqueous solutions: Role of self-doping and external doping, J. Electroanal. Chem., 544, 59, 10.1016/S0022-0728(03)00065-2
Zhang, 2004, The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid, J. Electroanal. Chem., 568, 189, 10.1016/j.jelechem.2004.01.022
Lee, 2009, The role of acidic m-cresol in polyaniline doped by camphorsulfonic acid, Polymer, 50, 4372, 10.1016/j.polymer.2009.07.009
Villarreal, 2007, Synthesis and characterization of composites of DBSA-doped polyaniline and polystyrene-based ionomers, Compos. Part Appl. Sci. Manuf., 38, 639, 10.1016/j.compositesa.2006.02.001
Haberko, 2012, Humidity and wetting effects in spin-cast blends of insulating polymers and conducting polyaniline doped with DBSA, J. Appl. Polym. Sci., 127, 2354, 10.1002/app.37742
Lyutov, 2013, Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): Electrochemical behaviour and conductive properties in neutral solutions, Chem. Pap., 67, 1002, 10.2478/s11696-013-0341-9
Tarver, 2009, Polymer acid doped polyaniline is electrochemically stable beyond pH 9, Chem. Mater., 21, 280, 10.1021/cm802314h
Bayer, 2010, Development of a protein sensing device utilizing interactions between polyaniline and a polymer acid dopant, Biomed. Microdevices, 12, 435, 10.1007/s10544-010-9400-y
Raitman, 2002, Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems, J. Am. Chem. Soc., 124, 6487, 10.1021/ja012680r
Tang, 2010, Electrochemical synthesis of polyaniline in surface-attached poly(acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid, Microchim. Acta, 168, 231, 10.1007/s00604-009-0286-4
Bonastre, 2011, An analysis of the kinetics of oxidation of ascorbate at poly(aniline)-poly(styrene sulfonate) modified microelectrodes, Phys. Chem. Chem. Phys., 13, 5365, 10.1039/c0cp02327b
Bartlett, 1996, Electroactivity, stability and application in an enzyme switch at pH 7 of poly(aniline)-poly(styrenesulfonate) composite films, J. Chem. Soc. Faraday Trans., 92, 4137, 10.1039/FT9969204137
Vieil, 2000, Control of polyaniline electroactivity by ion size exclusion, Synth. Met., 109, 199, 10.1016/S0379-6779(99)00237-4
Lee, 2009, Electronic transport characteristics of electrolyte-gated conducting polyaniline nanowire field-effect transistors, Appl. Phys. Lett., 95, 013113:1
Lee, 2010, Irreversible degradation behaviors of an electrolyte-gated polyaniline (PANI) nanowire field-effect transistor, J. Korean Phys. Soc., 57, 1416, 10.3938/jkps.57.1416