Nanosợi Polyaniline Dẫn Điện và Ứng Dụng của Nó trong Cảm Biến Chất Hóa

Nanomaterials - Tập 3 Số 3 - Trang 498-523
Edward Song1, Jin‐Woo Choi2,1
1School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
2Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70803, USA

Tóm tắt

Nanosợi polyaniline một chiều là một polymer dẫn điện có thể được sử dụng làm lớp hoạt động cho các cảm biến, trong đó sự thay đổi tính dẫn điện có thể được sử dụng để phát hiện các loài hóa học hoặc sinh học. Trong bài tổng quan này, các tính chất cơ bản của nanosợi polyaniline, bao gồm cấu trúc hóa học, hóa học oxy hóa-khử, và phương pháp tổng hợp, được thảo luận. Một khảo sát tài liệu toàn diện về các cảm biến dựa trên resistor hóa học/cảm điện động dựa trên nanosợi polyaniline được trình bày và các phát triển gần đây trong cảm biến dựa trên nanosợi polyaniline được tóm tắt. Cuối cùng, những hạn chế hiện tại và triển vọng tương lai của nanosợi polyaniline được thảo luận.

Từ khóa

#polyaniline #nanosợi dẫn điện #cảm biến chất hóa #hóa học oxy hóa-khử #tính dẫn điện

Tài liệu tham khảo

Patolsky, 2006, Nanowire-based biosensors, Anal. Chem., 78, 4260, 10.1021/ac069419j

Bangar, 2009, Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker, Anal. Chem., 81, 2168, 10.1021/ac802319f

Virji, 2004, Polyaniline nanofiber gas sensors: Examination of response mechanisms, Nano Lett., 4, 491, 10.1021/nl035122e

Zhang, 2006, Synthesis and applications of one-dimensional nano-structured polyaniline: An overview, Mater. Sci. Eng. B, 134, 9, 10.1016/j.mseb.2006.07.037

Mulchandani, 2011, Conducting polymer nanowires-based label-free biosensors, Curr. Opin. Biotechnol., 22, 502, 10.1016/j.copbio.2011.05.508

Ramgir, 2010, Nanowire-based sensors, Small, 6, 1705, 10.1002/smll.201000972

Baeumner, 2012, Recent progress in the design of nanofiber-based biosensing devices, Lab. Chip, 12, 2612, 10.1039/c2lc21240d

Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0

Wang, 2005, Carbon-nanotube based electrochemical biosensors: A review, Electroanalysis, 17, 7, 10.1002/elan.200403113

Jacobs, 2010, Review: Carbon nanotube based electrochemical sensors for biomolecules, Anal. Chim. Acta, 662, 105, 10.1016/j.aca.2010.01.009

Cui, 2001, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293, 1289, 10.1126/science.1062711

Patolsky, 2005, Nanowire nanosensors, Mater. Today, 8, 20, 10.1016/S1369-7021(05)00791-1

Yogeswaran, 2008, A review on the electrochemical sensors and biosensors composed of nanowires as sensing material, Sensors, 8, 290, 10.3390/s8010290

Sunkara, 2001, Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method, Appl. Phys. Lett., 79, 1546, 10.1063/1.1401089

Virji, 2006, Hydrogen sensors based on conductivity changes in polyaniline nanofibers, J. Phys. Chem. B, 110, 22266, 10.1021/jp063166g

Wang, 2006, Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system, Chem. Commun., 29, 3075, 10.1039/b604426c

Wang, 2004, Electrochemically fabricated polyaniline nanoframework electrode junctions that function as resistive sensors, Nano Lett., 4, 1693, 10.1021/nl049114p

Kuhn, 2011, Controlling the length and location of in situ formed nanowires by means of microfluidic tools, Lab Chip, 11, 753, 10.1039/C0LC00270D

Hou, 2008, A hydrodynamically focused stream as a dynamic template for site-specific electrochemical micropatterning of conducting polymers, Angew. Chem., 120, 1088, 10.1002/ange.200704264

Schaffhauser, 2010, A microfluidic approach for the formation of conductive nanowires and hollow hybrid structures, Adv. Mater., 22, 2255, 10.1002/adma.200903428

Shirakawa, 1977, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc. Chem. Commun., 1977, 578, 10.1039/c39770000578

Macdiarmid, 1987, Polyaniline: A new concept in conducting polymers, Synth. Met., 18, 285, 10.1016/0379-6779(87)90893-9

Sergeyeva, 1996, Polyaniline label-based conductometric sensor for IgG detection, Sens. Actuators B, 34, 283, 10.1016/S0925-4005(97)80006-8

Gerard, 2002, Application of conducting polymers to biosensors, Biosens. Bioelectron., 17, 345, 10.1016/S0956-5663(01)00312-8

Dhand, 2011, Recent advances in polyaniline based biosensors, Biosens. Bioelectron., 26, 2811, 10.1016/j.bios.2010.10.017

Lange, 2008, Conducting polymers in chemical sensors and arrays, Anal. Chim. Acta, 614, 1, 10.1016/j.aca.2008.02.068

Reddinger, 1999, Molecular Engineering of π-Conjugated Polymers, Advances in Polymer Science, Volume 145, 57, 10.1007/3-540-70733-6_2

MacDiarmid, 1989, Polyanilines: A novel class of conducting polymers, Faraday Discuss. Chem. Soc., 88, 317, 10.1039/dc9898800317

Syed, 1991, Review: Polyaniline—A novel polymeric material, Talanta, 38, 815, 10.1016/0039-9140(91)80261-W

Boyle, 1990, Polyaniline: A historical survey, Synth. Met., 36, 139, 10.1016/0379-6779(90)90050-U

Huang, 1986, Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes, J. Chem. Soc. Faraday Trans. 1, 82, 2385, 10.1039/f19868202385

Bhadra, 2009, Progress in preparation, processing and applications of polyaniline, Prog. Polym. Sci., 34, 783, 10.1016/j.progpolymsci.2009.04.003

Stejskal, 2010, Polyaniline nanostructures and the role of aniline oligomers in their formation, Prog. Polym. Sci., 35, 1420, 10.1016/j.progpolymsci.2010.07.006

Tran, 2008, Toward an understanding of the formation of conducting polymer nanofibers, ACS Nano, 2, 1841, 10.1021/nn800272z

Gupta, 2005, Large-area network of polyaniline nanowires prepared by potentiostatic deposition process, Electrochem. Commun., 7, 995, 10.1016/j.elecom.2005.07.008

Macdiarmid, 1985, Electrochemical characteristics of “polyaniline” cathodes and anodes in aqueous electrolytes, Mol. Cryst. Liq. Cryst., 121, 187, 10.1080/00268948508074859

Gupta, 2006, High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline, Mater. Lett., 60, 1466, 10.1016/j.matlet.2005.11.047

Zhiani, 2012, Performing of novel nanostructure MEA based on polyaniline modified anode in direct methanol fuel cell, J. Power Sources, 210, 42, 10.1016/j.jpowsour.2012.02.081

Kelly, 2013, Polyaniline: Application as solid state electrochromic in a flexible textile display, Displays, 34, 1, 10.1016/j.displa.2012.10.001

Anderson, 1991, Conjugated polymer films for gas separations, Science, 252, 1412, 10.1126/science.252.5011.1412

Chang, 2012, Novel anticorrosion coatings prepared from polyaniline/graphene composites, Carbon, 50, 5044, 10.1016/j.carbon.2012.06.043

Focke, 1987, Influence of oxidation state, pH, and counterion on the conductivity of polyaniline, J. Phys. Chem., 91, 5813, 10.1021/j100306a059

Zhang, 2004, Synthesis of polyaniline nanofibers by “nanofiber seeding”, J. Am. Chem. Soc., 126, 4502, 10.1021/ja031867a

Epstein, 1987, Polaron lattice in highly conducting polyaniline: Theoretical and optical studies, Phys. Rev. Lett., 59, 1464, 10.1103/PhysRevLett.59.1464

Heeger, 2001, Semiconducting and metallic polymers: The fourth generation of polymeric materials, J. Phys. Chem. B, 105, 8475, 10.1021/jp011611w

Ray, 1989, Polyaniline: Protonation/deprotonation of amine and imine sites, Synth. Met., 29, 151, 10.1016/0379-6779(89)90290-7

Nechtschein, 1989, On the nature of the conducting state of polyaniline, Synth. Met., 29, 211, 10.1016/0379-6779(89)90298-1

McManus, 1987, Influence of oxidation and protonation on the electrical conductivity of polyaniline, J. Phys. Chem., 91, 744, 10.1021/j100287a050

Genies, 1985, Redox mechanism and electrochemical behaviour or polyaniline deposits, J. Electroanal. Chem. Interfacial Electrochem., 195, 109, 10.1016/0022-0728(85)80009-7

Lapkowski, 1988, Cyclic voltammetry of polyaniline: Interpretation of the middle peak, J. Electroanal. Chem. Interfacial Electrochem., 249, 97, 10.1016/0022-0728(88)80351-6

Nunziante, 1989, Factors affecting the growth of thick polyaniline films by the cyclic voltammetry technique, Electrochim. Acta, 34, 223, 10.1016/0013-4686(89)87089-6

MacDiarmid, 2001, “Synthetic metals”: A novel role for organic polymers (Nobel lecture), Angew. Chem. Int. Ed., 40, 2581, 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2

Focke, 1988, Conduction mechanisms in polyaniline (emeraldine salt), J. Electroanal. Chem. Interfacial Electrochem., 256, 343, 10.1016/0022-0728(88)87008-6

Saheb, 2011, UV-vis and Raman spectral analysis of polyaniline/gold thin films as a function of applied potential, Anal. Lett., 44, 1206, 10.1080/00032719.2010.511741

Kobayashi, 1984, Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes, J. Electroanal. Chem. Interfacial Electrochem., 177, 281, 10.1016/0022-0728(84)80229-6

Li, 1993, Granular-rod model for electronic conduction in polyaniline, Phys. Rev. B, 47, 1840, 10.1103/PhysRevB.47.1840

Li, 1998, Porous polyaniline films with high conductivity, Synth. Met., 92, 121, 10.1016/S0379-6779(98)80101-X

Mott, N.F., and Davis, E.A. (2012). Electronic Processes in Non-Crystalline Materials, Oxford University Press.

Joo, 1998, Charge transport of the mesoscopic metallic state in partially crystalline polyanilines, Phys. Rev. B, 57, 9567, 10.1103/PhysRevB.57.9567

Ghosh, 1998, Crossover from Mott to Efros-Shklovskii variable-range-hopping conductivity in conducting polyaniline, Synth. Met., 97, 23, 10.1016/S0379-6779(98)00105-2

Sheng, 1973, Hopping conductivity in granular metals, Phys. Rev. Lett., 31, 44, 10.1103/PhysRevLett.31.44

Lin, 2011, Nano approach investigation of the conduction mechanism in polyaniline nanofibers, ACS Nano, 5, 1541, 10.1021/nn103525b

Zhou, 2003, Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm, Appl. Phys. Lett., 83, 3800, 10.1063/1.1622108

Liu, 1999, Enzymatically synthesized conducting polyaniline, J. Am. Chem. Soc., 121, 71, 10.1021/ja982270b

Ma, 2004, Polyaniline nanowires on Si surfaces fabricated with DNA templates, J. Am. Chem. Soc., 126, 7097, 10.1021/ja039621t

Konyushenko, 2006, Evolution of polyaniline nanotubes: The oxidation of aniline in water, J. Phys. Chem. B, 110, 9461, 10.1021/jp057528g

Zhang, 2008, Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions, Macromolecules, 41, 8877, 10.1021/ma801728j

Chiou, 2005, Polyaniline nanofibers prepared by dilute polymerization, Adv. Mater., 17, 1679, 10.1002/adma.200401000

Wei, 1989, A study of the mechanism of aniline polymerization, J. Polym. Sci. Part Polym. Chem., 27, 2385, 10.1002/pola.1989.080270720

Yang, 1992, The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions, J. Electroanal. Chem., 339, 423, 10.1016/0022-0728(92)80466-H

Li, 2009, Polyaniline nanofibers: A unique polymer nanostructure for versatile applications, Acc. Chem. Res., 42, 135, 10.1021/ar800080n

Huang, 2004, Nanofiber formation in the chemical polymerization of aniline: A mechanistic study, Angew. Chem., 116, 5941, 10.1002/ange.200460616

Dias, H.V.R., Wang, X., Rajapakse, R.M.G., and Elsenbaumer, R.L. (2006). A mild, copper catalyzed route to conducting polyaniline. Chem. Commun., 976–978.

Huang, 2004, A general chemical route to polyaniline nanofibers, J. Am. Chem. Soc., 126, 851, 10.1021/ja0371754

Huang, 2003, Polyaniline nanofibers: Facile synthesis and chemical sensors, J. Am. Chem. Soc., 125, 314, 10.1021/ja028371y

Qiang, 2008, Polyaniline nanofibers synthesized by rapid mixing polymerization, Synth. Met., 158, 544, 10.1016/j.synthmet.2008.03.023

Martin, 1995, Template synthesis of electronically conductive polymer nanostructures, Acc. Chem. Res., 28, 61, 10.1021/ar00050a002

Martin, 1994, Nanomaterials: A membrane-based synthetic approach, Science, 266, 1961, 10.1126/science.266.5193.1961

Li, 2010, Rapid polymerization initiated by redox initiator for the synthesis of polyaniline nanofibers, Polymer, 51, 1934, 10.1016/j.polymer.2010.03.004

Kitani, 1987, “Polyaniline”: Formation reaction and structure, Synth. Met., 18, 341, 10.1016/0379-6779(87)90902-7

Liang, 2002, Direct assembly of large arrays of oriented conducting polymer nanowires, Angew. Chem. Int. Ed., 41, 3665, 10.1002/1521-3773(20021004)41:19<3665::AID-ANIE3665>3.0.CO;2-B

Choi, 2000, Electrochemical growth of nanosized conducting polymer wires on gold using molecular templates, Adv. Mater., 12, 1547, 10.1002/1521-4095(200010)12:20<1547::AID-ADMA1547>3.0.CO;2-1

Stilwell, 1988, Electrochemistry of conductive polymers IV electrochemical studies on polyaniline degradation—Product identification and coulometric studies, J. Electrochem. Soc., 135, 2497, 10.1149/1.2095365

Huang, 2002, Polyaniline nanowires by electropolymerization from liquid crystalline phases, J. Mater. Chem., 12, 388, 10.1039/b107499g

Mu, 2008, Spectral characteristics of polyaniline nanostructures synthesized by using cyclic voltammetry at different scan rates, J. Phys. Chem. B, 112, 11558, 10.1021/jp8051517

Diaz, 1980, Electroactive polyaniline films, J. Electroanal. Chem. Interfacial Electrochem., 111, 111, 10.1016/S0022-0728(80)80081-7

Huang, 2003, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol., 63, 2223, 10.1016/S0266-3538(03)00178-7

Reneker, 1996, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 7, 216, 10.1088/0957-4484/7/3/009

Martin, 1990, Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced, Langmuir, 6, 1118, 10.1021/la00096a016

Martin, 1996, Membrane-based synthesis of nanomaterials, Chem. Mater., 8, 1739, 10.1021/cm960166s

Parthasarathy, 1994, Template-synthesized polyaniline microtubules, Chem. Mater., 6, 1627, 10.1021/cm00046a011

Jackowska, 2008, Hard template synthesis of conducting polymers: A route to achieve nanostructures, J. Solid State Electrochem., 12, 437, 10.1007/s10008-007-0453-7

Xiao, 2003, Electrocatalytic intercalator-induced winding of double-stranded DNA with polyaniline, Chem. Commun., 2003, 1540, 10.1039/b301749d

Fan, 2007, Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps, J. Am. Chem. Soc., 129, 5437, 10.1021/ja067477g

Liu, 1999, Biologically derived water soluble conducting polyaniline, Synth. Met., 101, 738, 10.1016/S0379-6779(98)00208-2

Bergveld, 1970, Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE Trans. Biomed. Eng., BME-17, 70, 10.1109/TBME.1970.4502688

Bergveld, 2003, Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years, Sens. Actuators B, 88, 1, 10.1016/S0925-4005(02)00301-5

Bergveld, 1972, Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology, IEEE Trans. Biomed. Eng., BME-19, 342, 10.1109/TBME.1972.324137

Liu, 2004, Polymeric nanowire chemical sensor, Nano Lett., 4, 671, 10.1021/nl049826f

Liu, 2012, Development of a polyaniline nanofiber-based carbon monoxide sensor for hydrogen fuel cell application, Int. J. Hydrog. Energy, 37, 13529, 10.1016/j.ijhydene.2012.06.096

Liu, 2012, Au nanoparticles decorated polyaniline nanofiber sensor for detecting volatile sulfur compounds in expired breath, Sens. Actuators B, 161, 504, 10.1016/j.snb.2011.10.068

Zeng, 2010, Humidity sensors based on polyaniline nanofibres, Sens. Actuators B, 143, 530, 10.1016/j.snb.2009.09.050

Lin, 2012, Polyaniline nanofiber humidity sensor prepared by electrospinning, Sens. Actuators B, 161, 967, 10.1016/j.snb.2011.11.074

Lim, 2010, Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes, Nanotechnology, 21, 075502:1, 10.1088/0957-4484/21/7/075502

Shin, 2010, Graphene/polyaniline nanocomposite for hydrogen sensing, J. Phys. Chem. C, 114, 16168, 10.1021/jp103134u

Shirsat, 2009, Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor, Appl. Phys. Lett., 94, 083502:1, 10.1063/1.3070237

Sadek, 2006, A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite, Nanotechnology, 17, 4488, 10.1088/0957-4484/17/17/034

Sadek, 2007, Polyaniline nanofiber based surface acoustic wave gas sensors-effect of nanofiber diameter on H2 response, IEEE Sens. J., 7, 213, 10.1109/JSEN.2006.883769

Arsat, 2009, Hydrogen gas sensor based on highly ordered polyaniline nanofibers, Sens. Actuators B, 137, 529, 10.1016/j.snb.2009.01.028

Wang, 2012, Constructions of polyaniline nanofiber-based electrochemical sensor for specific detection of nitrite and sensitive monitoring of ascorbic acid scavenging nitrite, Synth. Met., 162, 326, 10.1016/j.synthmet.2011.12.013

Xian, 2006, Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite, Biosens. Bioelectron., 21, 1996, 10.1016/j.bios.2005.09.014

Pal, 2007, Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species, Biosens. Bioelectron., 22, 2329, 10.1016/j.bios.2007.01.013

Li, 2004, Effect of morphology on the response of polyaniline-based conductometric gas sensors: Nanofibers vs. thin films, Electrochem. Solid-State Lett., 7, H44, 10.1149/1.1795053

2003, Polyaniline as a new sensitive layer for gas sensors, Anal. Chim. Acta, 475, 1, 10.1016/S0003-2670(02)01229-1

Huang, 2004, Nanostructured polyaniline sensors, Chem. Eur. J., 10, 1314, 10.1002/chem.200305211

Sadek, 2007, Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors, Sens. Actuators A, 139, 53, 10.1016/j.sna.2006.11.033

Liao, 2011, Carbon nanotube/polyaniline composite nanofibers: Facile synthesis and chemosensors, Nano Lett., 11, 954, 10.1021/nl103322b

Liao, 2011, Carrier mobility of single-walled carbon nanotube-reinforced polyaniline nanofibers, J. Phys. Chem. C, 115, 16187, 10.1021/jp2053585

Kaner, 2001, Gas, liquid and enantiomeric separations using polyaniline, Synth. Met., 125, 65, 10.1016/S0379-6779(01)00512-4

Liao, 2013, Carbon nanotube-templated polyaniline nanofibers: Synthesis, flash welding and ultrafiltration membranes, Nanoscale, 5, 3856, 10.1039/c3nr00441d

Guillen, 2010, Pore-structure, hydrophilicity, and particle filtration characteristics of polyaniline–polysulfone ultrafiltration membranes, J. Mater. Chem., 20, 4621, 10.1039/b925269j

Blinova, 2012, Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane, J. Membr. Sci., 423–424, 514, 10.1016/j.memsci.2012.09.003

Clark, 1962, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci., 102, 29, 10.1111/j.1749-6632.1962.tb13623.x

Wang, 2008, Electrochemical glucose biosensors, Chem. Rev., 108, 814, 10.1021/cr068123a

Bartlett, 2000, Microelectrochemical enzyme transistors, Chem. Commun., 2000, 105, 10.1039/a902905b

White, 1984, Chemical derivatization of an array of three gold microelectrodes with polypyrrole: Fabrication of a molecule-based transistor, J. Am. Chem. Soc., 106, 5375, 10.1021/ja00330a070

Ofer, 1990, Potential dependence of the conductivity of highly oxidized polythiophenes, polypyrroles, and polyaniline: Finite windows of high conductivity, J. Am. Chem. Soc., 112, 7869, 10.1021/ja00178a004

Bartlett, 1994, A microelectrochemical enzyme transistor responsive to glucose, Anal. Chem., 66, 1552, 10.1021/ac00081a031

Bartlett, 1998, An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film, Anal. Chem., 70, 3685, 10.1021/ac971088a

Battaglini, 2000, Covalent attachment of osmium complexes to glucose oxidase and the application of the resulting modified enzyme in an enzyme switch responsive to glucose, Anal. Chem., 72, 502, 10.1021/ac990321x

Forzani, 2004, A conducting polymer nanojunction sensor for glucose detection, Nano Lett., 4, 1785, 10.1021/nl049080l

Yuk, 2009, Performance enhancement of polyaniline-based polymeric wire biosensor, Biosens. Bioelectron., 24, 1348, 10.1016/j.bios.2008.07.079

Alocilja, 2003, A conductometric biosensor for biosecurity, Biosens. Bioelectron., 18, 813, 10.1016/S0956-5663(03)00020-4

Tahir, 2005, Polyaniline synthesis and its biosensor application, Biosens. Bioelectron., 20, 1690, 10.1016/j.bios.2004.08.008

Forzani, 2007, Hybrid amperometric and conductometric chemical sensor based on conducting polymer nanojunctions, Anal. Chem., 79, 5217, 10.1021/ac0703202

Gao, 2007, Detection of nucleic acids using enzyme-catalyzed template-guided deposition of polyaniline, Adv. Mater., 19, 602, 10.1002/adma.200601090

Chang, 2007, Electrochemical DNA biosensor based on conducting polyaniline nanotube array, Anal. Chem., 79, 5111, 10.1021/ac070639m

Rodriguez, 2002, Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline–poly(n-butyl methacrylate) composites, Sens. Actuators B, 85, 19, 10.1016/S0925-4005(02)00045-X

Sangodkar, 1996, A biosensor array based on polyaniline, Anal. Chem., 68, 779, 10.1021/ac950655w

Alocilja, 2003, Fabrication of a disposable biosensor for Escherichia coli O157:H7 detection, IEEE Sens. J., 3, 345, 10.1109/JSEN.2003.815782

Raffa, 2003, A microelectrochemical enzyme transistor based on an n-alkylated poly(aniline) and its application to determine hydrogen peroxide at neutral pH, Anal. Chem., 75, 4983, 10.1021/ac0341620

Yue, 1990, Synthesis of self-doped conducting polyaniline, J. Am. Chem. Soc., 112, 2800, 10.1021/ja00163a051

Yue, 1990, Sulfonic acid ring-substituted polyaniline, a self-doped conducting polymer, Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt., 189, 255

Ghenaatian, 2009, Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor, Synth. Met., 159, 1717, 10.1016/j.synthmet.2009.05.014

Thiemann, 2001, Electropolymerisation and properties of conducting polymers derived from aminobenzenesulphonic acids and from mixtures with aniline, Synth. Met., 125, 445, 10.1016/S0379-6779(01)00502-1

Kamaraj, 2010, Electrosysnthesis of poly(aniline-co-m-amino benzoic acid) for corrosion protection of steel, Mater. Chem. Phys., 122, 123, 10.1016/j.matchemphys.2010.02.061

Lukachova, 2003, Electroactivity of chemically synthesized polyaniline in neutral and alkaline aqueous solutions: Role of self-doping and external doping, J. Electroanal. Chem., 544, 59, 10.1016/S0022-0728(03)00065-2

Zhang, 2004, The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid, J. Electroanal. Chem., 568, 189, 10.1016/j.jelechem.2004.01.022

Lee, 2009, The role of acidic m-cresol in polyaniline doped by camphorsulfonic acid, Polymer, 50, 4372, 10.1016/j.polymer.2009.07.009

Villarreal, 2007, Synthesis and characterization of composites of DBSA-doped polyaniline and polystyrene-based ionomers, Compos. Part Appl. Sci. Manuf., 38, 639, 10.1016/j.compositesa.2006.02.001

Haberko, 2012, Humidity and wetting effects in spin-cast blends of insulating polymers and conducting polyaniline doped with DBSA, J. Appl. Polym. Sci., 127, 2354, 10.1002/app.37742

Lyutov, 2013, Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): Electrochemical behaviour and conductive properties in neutral solutions, Chem. Pap., 67, 1002, 10.2478/s11696-013-0341-9

Tarver, 2009, Polymer acid doped polyaniline is electrochemically stable beyond pH 9, Chem. Mater., 21, 280, 10.1021/cm802314h

Bayer, 2010, Development of a protein sensing device utilizing interactions between polyaniline and a polymer acid dopant, Biomed. Microdevices, 12, 435, 10.1007/s10544-010-9400-y

Raitman, 2002, Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems, J. Am. Chem. Soc., 124, 6487, 10.1021/ja012680r

Tang, 2010, Electrochemical synthesis of polyaniline in surface-attached poly(acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid, Microchim. Acta, 168, 231, 10.1007/s00604-009-0286-4

Bonastre, 2011, An analysis of the kinetics of oxidation of ascorbate at poly(aniline)-poly(styrene sulfonate) modified microelectrodes, Phys. Chem. Chem. Phys., 13, 5365, 10.1039/c0cp02327b

Bartlett, 1996, Electroactivity, stability and application in an enzyme switch at pH 7 of poly(aniline)-poly(styrenesulfonate) composite films, J. Chem. Soc. Faraday Trans., 92, 4137, 10.1039/FT9969204137

Vieil, 2000, Control of polyaniline electroactivity by ion size exclusion, Synth. Met., 109, 199, 10.1016/S0379-6779(99)00237-4

Lee, 2009, Electronic transport characteristics of electrolyte-gated conducting polyaniline nanowire field-effect transistors, Appl. Phys. Lett., 95, 013113:1

Lee, 2010, Irreversible degradation behaviors of an electrolyte-gated polyaniline (PANI) nanowire field-effect transistor, J. Korean Phys. Soc., 57, 1416, 10.3938/jkps.57.1416

He, 2001, A conducting polymer nanojunction switch, J. Am. Chem. Soc., 123, 7730, 10.1021/ja016264i

Song, E., and Choi, J.-W. (September, January 28). An On-chip Chemiresistive Polyaniline Nanowire-based pH Sensor with Self-calibration Capability. Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA.