Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rogers, 2011, Synthesis, assembly and applications of semiconductor nanomembranes, Nature, 477, 45, 10.1038/nature10381
Jia, 2014, Couples of colloidal semiconductor nanorods formed by self-limited assembly, Nat. Mater., 13, 301, 10.1038/nmat3867
Soukiassian, 2013, Hydrogen-induced nanotunnel opening within semiconductor subsurface, Nat. Commun., 4, 1
F. Wang, A. Dong, W. E. Buhro, Solution–Liquid–Solid Synthesis, properties, and applications of one-dimensional colloidal semiconductor nanorods and nanowires, Chem. Rev., DOI: 10.1021/acs.chemrev.5b00701.
Goesmann, 2010, Nanoparticulate functional materials, Angew. Chem. Int. Ed., 49, 1362, 10.1002/anie.200903053
Tian, 2014, Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review, Chem. Soc. Rev., 43, 6920, 10.1039/C4CS00180J
Walkey, 2015, Catalytic properties and biomedical applications of cerium oxide nanoparticles, Environ. Sci.: Nano, 2, 33
Djurisic, 2012, ZnO nanostructures: growth, properties and applications, J. Mater. Chem., 22, 6526, 10.1039/c2jm15548f
Saravanan, 2013, ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light, Mater. Sci. Eng. C, 33, 2235, 10.1016/j.msec.2013.01.046
Saravanan, 2012, Photocatalytic degradation of organic dyes using ZnO/CeO2 nanocomposite material under visible light, Adv. Mater. Res., 584, 381, 10.4028/www.scientific.net/AMR.584.381
Saravanan, 2011, ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light, Mater. Chem. Phys., 125, 277, 10.1016/j.matchemphys.2010.09.030
Saravanan, 2014, Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn2O3, J. Taiwan Inst. Chem. Eng., 45, 1910, 10.1016/j.jtice.2013.12.021
Saravanan, 2015, ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents, J. Colloid Interface Sci., 452, 126, 10.1016/j.jcis.2015.04.035
Mekonnen, 2015, Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water, Environ. Sci. Technol., 49, 12860, 10.1021/acs.est.5b03191
Boenne, 2014, Use of online water quality monitoring for assessing the effects of WWTP overflows in rivers, Environ. Sci.: Processes Impacts, 16, 1510
Gupta, 2012, Chemical treatment technologies for waste-water recycling—an overview, RSC Adv., 2, 6380, 10.1039/c2ra20340e
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0
Wang, 2014, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev., 43, 5234, 10.1039/C4CS00126E
Yu, 2012, Fabrication, structure, and photocatalytic activities of boron-doped ZnO nanorods hydrothermally grown on CVD diamond film, Chem. Phys. Lett., 539, 74, 10.1016/j.cplett.2012.04.051
Saravanan, 2013, Enhanced photocatalytic activity of ZnO/CuO nanocomposites for the degradation of textile dye on visible light illumination, Mater. Sci. Eng. C, 33, 91, 10.1016/j.msec.2012.08.011
Bhadra, 2009, Progress in preparation, processing and applications of polyaniline, Prog. Polym. Sci., 34, 783, 10.1016/j.progpolymsci.2009.04.003
Bogdanovic, 2015, Interfacial synthesis of gold–polyaniline nanocomposite and its electrocatalytic application, ACS Appl. Mater. Interfaces, 7, 28393, 10.1021/acsami.5b09145
Yang, 2013, Synthesis of TiO2–polyaniline core–shell nanofibers and their unique UV photoresponse based on different photoconductive mechanisms in oxygen and non-oxygen environments, Chem. Commun., 49, 4676, 10.1039/c3cc39157d
Zhao, 2014, Nanoporous TiO2/polyaniline composite films with enhanced photoelectrochemical properties, Mater. Lett., 130, 150, 10.1016/j.matlet.2014.05.099
Saravanan, 2013, Comparative study on photocatalytic activity of ZnO prepared by different methods, J. Mol. Liq., 181, 133, 10.1016/j.molliq.2013.02.023
Saravanan, 2013, Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts, Mater. Sci. Eng. C, 33, 4725, 10.1016/j.msec.2013.07.034
Saravanan, 2015, Excellent visible light photocatalytic activity of β-Ag0.333V2O5 nanorods by facile thermal decomposition method, J. Saudi Chem. Soc., 19, 521, 10.1016/j.jscs.2015.06.001
Saravanan, 2013, The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures, J. Mol. Liq., 177, 394, 10.1016/j.molliq.2012.10.018
Saeed, 2014, Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials, Carbohydr. Polym., 99, 817, 10.1016/j.carbpol.2013.08.096
Witnoon, 2013, Chitosan-assisted combustion synthesis of CuO–ZnO nanocomposites: effect of pH and chitosan concentration, Ceram. Int., 39, 3371, 10.1016/j.ceramint.2012.08.018
Rajasudha, 2010, Preparation and characterization of polyindole–ZnO composite polymer electrolyte with LiClO4, Ionics, 16, 839, 10.1007/s11581-010-0472-8
Jassby, 2012, Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles, Environ. Sci. Technol., 46, 6934, 10.1021/es202009h