Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes

Journal of Molecular Liquids - Tập 221 - Trang 1029-1033 - 2016
R. Saravanan1, Elisban Juani Sacari Sacari2, F. Gracia1, Mohammad Mansoob Khan3, Edgar Mosquera2, Vinod Kumar Gupta4,5
1Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 850, Santiago, Chile
2Nanoscale Materials Laboratory, Department of Materials Science, University of Chile, Avenida Tupper 2069, Santiago, Chile
3Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
4Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa
5Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rogers, 2011, Synthesis, assembly and applications of semiconductor nanomembranes, Nature, 477, 45, 10.1038/nature10381

Jia, 2014, Couples of colloidal semiconductor nanorods formed by self-limited assembly, Nat. Mater., 13, 301, 10.1038/nmat3867

Soukiassian, 2013, Hydrogen-induced nanotunnel opening within semiconductor subsurface, Nat. Commun., 4, 1

F. Wang, A. Dong, W. E. Buhro, Solution–Liquid–Solid Synthesis, properties, and applications of one-dimensional colloidal semiconductor nanorods and nanowires, Chem. Rev., DOI: 10.1021/acs.chemrev.5b00701.

Goesmann, 2010, Nanoparticulate functional materials, Angew. Chem. Int. Ed., 49, 1362, 10.1002/anie.200903053

Tian, 2014, Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review, Chem. Soc. Rev., 43, 6920, 10.1039/C4CS00180J

Walkey, 2015, Catalytic properties and biomedical applications of cerium oxide nanoparticles, Environ. Sci.: Nano, 2, 33

Djurisic, 2012, ZnO nanostructures: growth, properties and applications, J. Mater. Chem., 22, 6526, 10.1039/c2jm15548f

Saravanan, 2013, ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light, Mater. Sci. Eng. C, 33, 2235, 10.1016/j.msec.2013.01.046

Saravanan, 2012, Photocatalytic degradation of organic dyes using ZnO/CeO2 nanocomposite material under visible light, Adv. Mater. Res., 584, 381, 10.4028/www.scientific.net/AMR.584.381

Saravanan, 2011, ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light, Mater. Chem. Phys., 125, 277, 10.1016/j.matchemphys.2010.09.030

Saravanan, 2014, Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn2O3, J. Taiwan Inst. Chem. Eng., 45, 1910, 10.1016/j.jtice.2013.12.021

Saravanan, 2015, ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents, J. Colloid Interface Sci., 452, 126, 10.1016/j.jcis.2015.04.035

Mekonnen, 2015, Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water, Environ. Sci. Technol., 49, 12860, 10.1021/acs.est.5b03191

Boenne, 2014, Use of online water quality monitoring for assessing the effects of WWTP overflows in rivers, Environ. Sci.: Processes Impacts, 16, 1510

Gupta, 2012, Chemical treatment technologies for waste-water recycling—an overview, RSC Adv., 2, 6380, 10.1039/c2ra20340e

Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0

Li, 2016, Hierarchical photocatalysts, Chem. Soc. Rev., 45, 2603, 10.1039/C5CS00838G

Wang, 2014, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev., 43, 5234, 10.1039/C4CS00126E

Yu, 2012, Fabrication, structure, and photocatalytic activities of boron-doped ZnO nanorods hydrothermally grown on CVD diamond film, Chem. Phys. Lett., 539, 74, 10.1016/j.cplett.2012.04.051

Eskizeybek, 2012, Appl. Catal. B Environ., 119−120, 197, 10.1016/j.apcatb.2012.02.034

Saravanan, 2013, Enhanced photocatalytic activity of ZnO/CuO nanocomposites for the degradation of textile dye on visible light illumination, Mater. Sci. Eng. C, 33, 91, 10.1016/j.msec.2012.08.011

Bhadra, 2009, Progress in preparation, processing and applications of polyaniline, Prog. Polym. Sci., 34, 783, 10.1016/j.progpolymsci.2009.04.003

Bogdanovic, 2015, Interfacial synthesis of gold–polyaniline nanocomposite and its electrocatalytic application, ACS Appl. Mater. Interfaces, 7, 28393, 10.1021/acsami.5b09145

Yang, 2013, Synthesis of TiO2–polyaniline core–shell nanofibers and their unique UV photoresponse based on different photoconductive mechanisms in oxygen and non-oxygen environments, Chem. Commun., 49, 4676, 10.1039/c3cc39157d

Zhao, 2014, Nanoporous TiO2/polyaniline composite films with enhanced photoelectrochemical properties, Mater. Lett., 130, 150, 10.1016/j.matlet.2014.05.099

Saravanan, 2013, Comparative study on photocatalytic activity of ZnO prepared by different methods, J. Mol. Liq., 181, 133, 10.1016/j.molliq.2013.02.023

Saravanan, 2013, Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts, Mater. Sci. Eng. C, 33, 4725, 10.1016/j.msec.2013.07.034

Saravanan, 2015, Excellent visible light photocatalytic activity of β-Ag0.333V2O5 nanorods by facile thermal decomposition method, J. Saudi Chem. Soc., 19, 521, 10.1016/j.jscs.2015.06.001

Saravanan, 2013, The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures, J. Mol. Liq., 177, 394, 10.1016/j.molliq.2012.10.018

Saeed, 2014, Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials, Carbohydr. Polym., 99, 817, 10.1016/j.carbpol.2013.08.096

Witnoon, 2013, Chitosan-assisted combustion synthesis of CuO–ZnO nanocomposites: effect of pH and chitosan concentration, Ceram. Int., 39, 3371, 10.1016/j.ceramint.2012.08.018

Rajasudha, 2010, Preparation and characterization of polyindole–ZnO composite polymer electrolyte with LiClO4, Ionics, 16, 839, 10.1007/s11581-010-0472-8

Jassby, 2012, Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles, Environ. Sci. Technol., 46, 6934, 10.1021/es202009h

Radoicic, 2013, Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles, Appl. Catal. B Environ., 136−137, 133, 10.1016/j.apcatb.2013.01.007