Conditioning convex and nonconvex problems

Journal of Optimization Theory and Applications - Tập 90 - Trang 535-554 - 1996
J. -P. Penot1
1Mathématiques URA 1204, Faculté des Sciences, Université de Pau, Pau, France

Tóm tắt

Two ways of defining a well-conditioned minimization problem are introduced and related, with emphasis on the quantitative aspects. These concepts are used to study the behavior of the solution sets of minimization problems for functions with connected sublevel sets, generalizing results of Attouch-Wets in the convex case. Applications to continuity properties of subdifferentials and to projection mappings are pointed out.

Tài liệu tham khảo

Tikhonov, A., andArsénine, V.,Méthodes de Résolution de Problémes Mal Posés, MIR, Moscow, Russia, 1974 (French Translation, 1976). Furi, M., andVignoli, A.,About Well-Posed Minimum Problems for Functionals in Metric Spaces, Journal of Optimization Theory and Applications, Vol. 5, pp. 225–229, 1970. Revalski, J. P.,Generic Well-Posedness in Some Classes of Optimization Problems, Acta Universitatea Carolinea, Vol. 28, pp. 117–125, 1987. Bednarczuk, E., andPenot, J. P.,On the Positions of the Notions of Well-Posed Minimization Problems, Bollettino della Unione Matematica Italiana, Vol. 6B, pp. 665–683, 1992. Bednarczuk, E., andPenot, J.-P.,Metrically Well-Set Minimization Problems, Applied Mathematics and Optimization, Vol. 26, pp. 273–285, 1992. Dontchev, A. L., andZolezzi, T.,Well-Posed Optimization Problems, Lecture Notes in Mathematics, Springer Verlag, Berlin, Germany, Vol. 1543, 1993. Lemaire-Misonne, C.,Conditionnement de Problèmes: Application aux Statistiques, Preprint, University of Montpellier, 1985. Penot, J.-P., andVolle, M.,Inversion of Real-Valued Functions and Applications, ZOR-Methods and Models of Operations Research, Vol. 34, pp. 117–141, 1990. Penot, J.-P.,Metric Regularity, Openness, and Lipschitzian Behavior of Multifunctions, Journal of Nonlinear Analysis: Theory, Methods and Applications, Vol. 13, pp. 629–643, 1989. Zang, I., andAvriel, M.,On Functions whose Local Minima are Global, Journal of Optimization Theory and Applications, Vol. 16, pp 183–190, 1975. Avriel, M., andZang, I.,Generalized Arcwise-Connected Functions and Characterizations of Local-Global Mininum Properties, Journal of Optimization Theory and Applications, Vol. 32, pp. 407–425, 1980. Volle, M.,Convergence en Niveaux et en Epigraphes, Comptes Rendus de l'Académie des Sciences de Paris, Série 1, Vol. 299, pp. 295–298, 1984. Attouch, H., andWets, R. J. B.,Quantitative Stability of Variational Systems, Part 2: A Framework for Nonlinear Conditioning, SIAM Journal on Optimization, Vol. 3, 359–381, 1992. Federer, H.,Geometric Measure Theory, Springer Verlag, Berlin, Germany, 1969. Michel, P., andPenot, J.-P.,A Generalized Derivative for Calm and Stable Functions, Differential and Integral Equations, Vol. 5, pp. 433–454, 1992. Mosco, U.,Convergence of Convex Sets and Solutions of Variational Inequalities, Advances in Mathematics, Vol. 3, 510–585, 1969. Penot, J. P.,Preservation of Persistence and Stability under Intersections and Operations, Part 1: Persistence, Journal of Optimization Theory and applications, Vol. 79, pp. 525–551, 1993. Attouch, H., andWets, R. J.-B.,Quantitative Stability of Variational Systems, Part 1: The Epigraphical Distance, Transactions of the American Mathematical Society, Vol. 328, pp. 695–729, 1992. Attouch, H., andWets, R. J.-B.,Quantitative Stability of Variational Systems: Part 3: ε-Approximate Solutions, Preprint, IIASA, Laxenburg, Austria, 1987. Azé, D., andPenot, J.-P.,Operations on Convergent Families of Sets and Functions, Optimization, Vol. 21, pp. 521–534, 1990. Attouch, H., Lucchetti, R., andWets, R. J.-B.,The Topology of the ϱ-Hausdorff Distance, Annali di Matematica Pura e Applicata, Serie 4, Vol. 160, pp. 303–320, 1991. Beer, G.,Conjugate Convex Functions and the Epidistance Topology, Proceedings of the American Mathematical Society, Vol. 108, pp. 117–126, 1990. Penot, J.-P.,The Cosmic Hausdorff Topology, the Bounded Hausdorff Topology and Continuity of Polarity, Proceedings of the American Mathematical Society, Vol. 113, pp. 275–285, 1991. Penot, J.-P.,Topologies and Convergences on the Space of Convex Functions, Nonlinear Analysis: Theory, Methods, and Applications, Vol. 18, pp. 905–916, 1992. Azé, D., andPenot, J.-P.,Qualitative Results about the Convergence of Convex Sets and Convex Functions, Optimization and Nonsmooth Analysis, Edited by A. D. Ioffe et al., Pitman Research Notes, Longman, Harlow, England, Vol. 244, pp. 1–25, 1992. Attouch, H., andWets, R. J.-B.,Isometries for the Legendre-Fenchel Transform, Transactions of the American Mathematical Society, Vol. 296, pp. 33–60, 1986. Attouch, H.,Variational Convergence for Functions and Operators, Pitman, Boston, Massachusetts, 1984. Penot, J.-P., andVolle, M.,Topological Stability Results about Approximate Solutions of Parametrized Minimization Problems, Optimization, Vol. 22, pp. 855–868, 1991. Rockafellar, R. T., andWets, R. J.-B.,Variational Systems: An Introduction, Multifunctions and Integrands, Edited by G. Salinetti, Lecture Notes in Mathematics, Springer Verlag, Berlin, Germany, Vol. 1091, pp. 112–129, 1984. Penot, J. P.,Miscellaneous Incidences of Convergence Theories in Optimization and Nonlinear Analysis, Part 1: Behavior of Solutions, Set-Valued Analysis, Vol. 2, pp. 259–274, 1994. Zalinescu, C.,On Uniformly Convex Functions, Journal of Mathematical Analysis and Applications, Vol. 95, pp. 344–374, 1983. Azé, D., andPenot, J. P.,Uniformly Convex and Uniformly Smooth Convex Functions, Annales de la Faculté des Sciences Toulouse, Serie 6, Vol. 4, pp. 405–430, 1995. Azé, D., andRahmouni, A.,Lipschitz Behavior of the Legendre-Fenchel Transform, Set-Valued Analysis, Vol. 2, pp. 35–48, 1994. Danes, J.,On Local and Global Moduli of Convexity, Commentationes Mathematicae Universitatis Carolinea, Vol. 18, pp. 393–400, 1977. Lemaire, B.,Bonne Position, Conditionnement et Bon Comportement Asymptotique, Séminaire d'Analyse Convexe, Vol. 22, pp. 5.1–5.12, 1992. Yen, N. D.,Hölder Continuity of Solutions to a Parametric Variational Inequality, Preprint, University of Pisa, 1992.