Conditioned inhibition of amphetamine sensitization
Tài liệu tham khảo
Allain, F., Delignat-Lavaud, B., Beaudoin, M. –P., Jacquemet, V., Robinson, T. E., Trudeau, L. –E., & Samaha, A.-N. (2021) Amphetamine maintenance therapy during intermittent cocaine self-administration in rats attenuates psychomotor and dopamine sensitization and reduces addiction-like behavior. Neuropsychopharmacology 46, 305–315 Available at: http://dx.doi.org/10.1038/s41386-020-0773-1.
Anagnostaras, 1996, Sensitization to the psychomotor stimulant effects of amphetamine: Modulation by associative learning, Behavioral Neuroscience, 110, 1397, 10.1037/0735-7044.110.6.1397
Anagnostaras, S. G., Schallert, T., & Robinson, T. E. (2002). Memory processes governing amphetamine-induced psychomotor sensitization. Neuropsychopharmacology 26, 703–715, Available at: http://dx.doi.org/10.1016/S0893-133X(01)00402-X.
Boileau, I., Dagher, A., Leyton, M., Gunn, R. N., Baker, G. B., Diksic, M., & Benkelfat, C. (2006). Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Archives of General Psychiatry 63, 1386–1395. Available at: http://dx.doi.org/10.1001/archpsyc.63.12.1386.
Bossert, J. M., Adhikary, S., St. Laurent, R., Marchant, N. J., Wang, H. L., Morales, M., & Shaham, Y. (2016). Role of projections from ventral subiculum to nucleus accumbens shell in context-induced reinstatement of heroin seeking in rats. Psychopharmacology 233:1991–2004 Available at: https://pubmed.ncbi.nlm.nih.gov/26344108/.
Britt, 2012, Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens, Neuron, 76, 790, 10.1016/j.neuron.2012.09.040
Caballero, J. P., Scarpa, G. B., Remage-Healey, L., & Moorman, D. E. (2019). Differential effects of dorsal and ventral medial prefrontal cortex inactivation during natural reward seeking, extinction, and cue-induced reinstatement. eNeuro 6 Available at: http://dx.doi.org/10.1523/ENEURO.0296-19.2019.
Calipari, E. S., Ferris, M. J., Zimmer, B. a., Roberts, D. C. S., & Jones, S. R. (2013). Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology 38, 2385–2392 Available at: http://dx.doi.org/10.1038/npp.2013.136.
Campioni, M. R., Xu, M., & McGehee, D. S. (2009) Stress-induced changes in nucleus accumbens glutamate synaptic plasticity. Journal of Neurophysiology 101, 3192–3198. Available at: http://dx.doi.org/10.1152/jn.91111.2008.
Carr, 2020, Intermittent access cocaine self-administration produces psychomotor sensitization: Effects of withdrawal, sex and cross-sensitization, Psychopharmacology, 10.1007/s00213-020-05500-4
Carr, 2000, Projections from the rat prefrontal cortex to the ventral tegmental area: Target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons, Journal of Neuroscience, 20, 3864, 10.1523/JNEUROSCI.20-10-03864.2000
Casey, K. F., Benkelfat, C., Cherkasova, M. V., Baker, G. B., Dagher, A., & Leyton, M .(2014). Reduced dopamine response to amphetamine in subjects at ultra-high risk for addiction. Biological Psychiatry 76, 23–30 Available at: http://dx.doi.org/10.1016/j.biopsych.2013.08.033.
Cortright, J. J., Sampedro, G. R., Neugebauer, N. M., Vezina, P. (2012). Previous exposure to nicotine enhances the incentive motivational effects of amphetamine via nicotine-associated contextual stimuli. Neuropsychopharmacology 37, 2277–2284. Available at: http://dx.doi.org/10.1038/npp.2012.80.
Cox, 2019, Striatal circuits for reward learning and decision-making, Nature Reviews Neuroscience, 20, 482, 10.1038/s41583-019-0189-2
Cox, S. M. L., Benkelfat, C., Dagher, A., Delaney, J. S., Durand, F., McKenzie, S. A., Kolivakis, T., Casey, K. F., Leyton, M. (2009). Striatal dopamine responses to intranasal cocaine self-administration in humans. Biological Psychiatry 65, 846–850 Available at: http://dx.doi.org/10.1016/j.biopsych.2009.01.021.
Daiwile, 2022, Sex differences in methamphetamine use disorder perused from pre-clinical and clinical studies: Potential therapeutic impacts, Neuroscience & Biobehavioral Reviews, 10.1016/j.neubiorev.2022.104674
Everitt, 1999, Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems, Annals of the New York Academy of Sciences, 877, 412, 10.1111/j.1749-6632.1999.tb09280.x
Fowler, 1985, Factors affecting the acquisition and extinction of conditioned inhibition suggest a “slave” process, 113
Fowler, H., Lysle, D. T., & DeVito, P.L. (1991). Conditioned excitation and conditioned inhibition of fear: Asymmetrical processes as evident in extinction. Fear, avoidance, and phobias: A fundamental analysis, 317–362 Available at: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc3&NEWS=N&AN=1991-97363-010.
Gabriele, 2010, Reversible inactivation of the basolateral amygdala, but not the dorsolateral caudate putamen, attenuates consolidation of cocaine-cue associative learning in a reinstatement model of drug-seeking, European Journal of Neuroscience, 32, 1024, 10.1111/j.1460-9568.2010.07394.x
Jackson, 2001, Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens, Journal of Neurochemistry, 10.1046/j.1471-4159.2001.00499.x
Jackson, 2001, Amygdala regulation of nucleus accumbens dopamine output is governed by the prefrontal cortex, Journal of Neuroscience, 21, 676, 10.1523/JNEUROSCI.21-02-00676.2001
Kalivas, 1993, Time course of extracellular dopamine and behavioral sensitization to cocaine I. Dopamine axon terminals, Journal of Neuroscience, 13, 266, 10.1523/JNEUROSCI.13-01-00266.1993
Leyton, 2013, Striatal ups and downs: Their roles in vulnerability to addictions in humans, Neuroscience & Biobehavioral Reviews, 10.1016/j.neubiorev.2013.01.018
Lysle, 1985, Inhibition as a “slave” process: Deactivation of conditioned inhibition through extinction of conditioned excitation, Journal of Experimental Psychology: Animal Behavior Processes, 11, 71
McEntee, 1993, Glutamate: Its role in learning, memory, and the aging brain, Psychopharmacology, 10.1007/BF02253527
McGlinchey, 2016, Prelimbic to accumbens core pathway is recruited in a dopamine-dependent manner to drive cued reinstatement of cocaine seeking, Journal of Neuroscience, 10.1523/JNEUROSCI.1291-15.2016
Otis, J. M., Zhu, M., Namboodiri, V. M. K., Cook, C. A., Kosyk, O., Matan, A. M., Ying, R., Hashikawa, Y., Hashikawa, K., Trujillo-Pisanty, I., Guo, J., Ung, R. L., Rodriguez-Romaguera, J., Anton, E. S., & Stuber, G.D. (2019) Paraventricular thalamus projection neurons integrate cortical and hypothalamic signals for cue-reward processing. Neuron 103, 423-431.e4 Available at: http://dx.doi.org/10.1016/j.neuron.2019.05.018.
Pacchioni, A. M., Cador, M., Bregonzio, C., & Cancela, L. M. (2007). A glutamate-dopamine interaction in the persistent enhanced response to amphetamine in nucleus accumbens core but not shell following a single restraint stress. Neuropsychopharmacology 32, 682–692 Available at: http://dx.doi.org/10.1038/sj.npp.1301080.
Peters, 2008, Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats, Journal of Neuroscience, 10.1523/JNEUROSCI.1045-08.2008
Pierce, 1996, Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization, Journal of Neuroscience, 16, 1550, 10.1523/JNEUROSCI.16-04-01550.1996
Rescorla, 1969, Conditioned inhibition of fear resulting from negative CS-US contingencies, Journal of Comparative and Physiological Psychology, 67, 504, 10.1037/h0027313
Robbins, 2006, Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition, Trends in Pharmacological Sciences, 27, 141, 10.1016/j.tips.2006.01.009
Rosenkranz, J. A. & Grace, A. a. (2002) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. Journal of Neuroscience 22, 324–337 Available at: https://www.ncbi.nlm.nih.gov/pubmed/11756516.
Rosenthal, M. Z., & Kutlu, M. G. (2014). Translation of associative learning models into extinction reminders delivered via mobile phones during cue exposure interventions for substance use. Psychology of Addictive Behaviors 28, 863–871 Available at: http://dx.doi.org/10.1037/a0037082.
Rouillon, C., Abraini, J. H., David, H. N. (2008). Prefrontal cortex and basolateral amygdala modulation of dopamine-mediated locomotion in the nucleus accumbens core. Experimental Neurology 212, 213–217 Available at: http://dx.doi.org/10.1016/j.expneurol.2008.04.002.
Seamans, J. K. & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology 74, 1–58 Available at: http://dx.doi.org/10.1016/j.pneurobio.2004.05.006.
Shiflett, 2011, Molecular substrates of action control in cortico-striatal circuits, Progress in Neurobiology, 95, 1, 10.1016/j.pneurobio.2011.05.007
Singer, B. F., Bryan, M. A., Popov, P., Scarff, R., Carter, C., Wright, E., Aragona, B.J., & Robinson, T. E. (2016a). The sensory features of a food cue influence its ability to act as an incentive stimulus and evoke dopamine release in the nucleus accumbens core. Learning & Memory 23, 595–606 Available at: http://dx.doi.org/10.1101/lm.043026.116.
Singer, B. F., Bubula, N., Li, D., Przybycien-Szymanska, M. M., Bindokas, V. P., & Vezina, P. (2016b). Drug-paired contextual stimuli increase dendritic spine dynamics in select nucleus accumbens neurons. Neuropsychopharmacology 41, 2178–2187 Available at: http://dx.doi.org/10.1038/npp.2016.39.
Singer, B. F., Bubula, N., Przybycien-Szymanska, M. M., Li, D., Vezina, P. (2016c). Stimuli associated with the presence or absence of amphetamine regulate cytoskeletal signaling and behavior. European Neuropsychopharmacology 26, 1836–1842 Available at: http://dx.doi.org/10.1016/j.euroneuro.2016.09.639.
Singer, B. F., Neugebauer, N. M., Forneris, J., Rodvelt, K. R., Li, D., Bubula, N., & Vezina, P. (2014). Locomotor conditioning by amphetamine requires cyclin-dependent kinase 5 signaling in the nucleus accumbens. Neuropharmacology 85, 243–252 Available at: http://dx.doi.org/10.1016/j.neuropharm.2014.05.033.
Singer, B. F., Tanabe, L. M., Gorny, G., Jake-Matthews, C., Li, Y., Kolb, B., & Vezina, P. (2009). Amphetamine-induced changes in dendritic morphology in rat forebrain correspond to associative drug conditioning rather than nonassociative drug sensitization. Biological Psychiatry 65, 835–840 Available at: http://dx.doi.org/10.1016/j.biopsych.2008.12.020.
Sotres-Bayon, 2012, Gating of fear in prelimbic cortex by hippocampal and amygdala inputs, Neuron, 76, 804, 10.1016/j.neuron.2012.09.028
Stefanik, M. T. & Kalivas, P.W. (2013). Optogenetic dissection of basolateral amygdala projections during cue-induced reinstatement of cocaine seeking. Frontiers in Behavioral Neuroscience 7, 213 Available at: http://dx.doi.org/10.3389/fnbeh.2013.00213.
Stewart, 1991, Extinction procedures abolish conditioned stimulus control but spare sensitized responding to amphetamine, Behavioural Pharmacology, 2, 65, 10.1097/00008877-199102000-00009
Suto, 2013, Bidirectional modulation of cocaine expectancy by phasic glutamate fluctuations in the nucleus accumbens, Journal of Neuroscience, 10.1523/JNEUROSCI.0503-13.2013
Vezina, P. & Leyton, M. (2009). Conditioned cues and the expression of stimulant sensitization in animals and humans. Neuropharmacology 56(Suppl 1), 160–168. Available at: http://dx.doi.org/10.1016/j.neuropharm.2008.06.070.
Villaruel, F. R., Lacroix, F., Sanio, C., Sparks, D. W., Chapman, C. A. & Chaudhri, N. (2018). Optogenetic activation of the infralimbic cortex suppresses the return of appetitive pavlovian-conditioned responding following extinction. Cereb Cortex 28, 4210–4221 Available at: http://dx.doi.org/10.1093/cercor/bhx275.
Volkow, N. D., Tomasi, D., Wang, G. -J., Logan, J., Alexoff, D. L., Jayne, M., Fowler, J. S., Wong, C., Yin, P. & Du, C. (2014) Stimulant-induced dopamine increases are markedly blunted in active cocaine abusers. Molecular Psychiatry, 1–7. Available at: http://dx.doi.org/10.1038/mp.2014.58.
Volkow, 1997, Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects, Nature, 386, 830, 10.1038/386830a0
Wearne TA, Cornish JL (2019) Inhibitory regulation of the prefrontal cortex following behavioral sensitization to amphetamine and/or methamphetamine psychostimulants: A review of GABAergic mechanisms. Progress in Neuro-Psychopharmacology & Biological Psychiatry 95, 109681. Available at: http://dx.doi.org/10.1016/j.pnpbp.2019.109681.
Weiss, 2000, Control of cocaine-seeking behavior by drug-associated stimuli in rats: Effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens, Proceedings of the National Academy of Sciences of the United States of America, 97, 4321, 10.1073/pnas.97.8.4321
You, Z. B., Chen, Y. Q. & Wise, R. A. (2001). Dopamine and glutamate release in the nucleus accumbens and ventral tegmental area of rat following lateral hypothalamic self-stimulation. Neuroscience 107, 629–639 Available at: http://dx.doi.org/10.1016/S0306-4522(01)00379-7.