Conditional Stable Soliton Resolution for a Semi-linear Skyrme Equation

Annals of PDE - Tập 5 - Trang 1-59 - 2019
Andrew Lawrie1, Casey Rodriguez2
1Department of Mathematics, MIT, Cambridge, USA
2Department of Mathematics, University of Chicago, Chicago, USA

Tóm tắt

We study a semi-linear version of the Skyrme system due to Adkins and Nappi. The objects in this system are maps from $$(1+3)$$-dimensional Minkowski space into the 3-sphere and 1-forms on $$\mathbb {R}^{1+3}$$, coupled via a Lagrangian action. Under a co-rotational symmetry reduction we establish the existence, uniqueness, and unconditional asymptotic stability of a family of stationary solutions $$Q_n$$, indexed by the topological degree $$n \in \mathbb {N}\cup \{0\}$$ of the underlying map. We also prove that an arbitrarily large equivariant perturbation of $$Q_n$$ leads to a globally defined solution that scatters to $$Q_n$$ in infinite time as long as the critical norm for the solution remains bounded on the maximal interval of existence given by the local Cauchy theory. We remark that the evolution equations are super-critical with respect to the conserved energy.

Tài liệu tham khảo

Adkins, G.S., Nappi, C.R.: Stabilization of chiral solitons via vector mesons. Phys. Lett. B 137(3–4), 251–256 (1984) Bahouri, P., Gérard, A.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121, 131–175 (1999) Bizoń, P., Chmaj, T., Maliborski, M.: Equivariant wave maps exterior to a ball. Nonlinearity 25(5), 1299–1309 (2012) Bizoń, P., Chmaj, T., Rostworowski, A.: Asymptotic stability of the skyrmion. Phys. Rev. D 75(12), 121702 (2007) Christ, M., Kiselev, A.: Maximal functions associated to filtrations. J. Funct. Anal. 179(2), 409–425 (2001) Côte, R., Kenig, C., Merle, F.: Scattering below critical energy for the \(4d\) Yang-Mills equation and for the \(2d\) corotational wave map system. Comm. Math. Phys. 284(1), 203–225 (2008) Creek, M., Donninger, R.., Schlag, W., Snelson, S.: Linear stability of the skyrmion. ArXiv e-prints, 03 (2016) Dodson, B., Lawrie, A.: Scattering for radial, semi-linear, super-critical wave equations with bounded critical norm. Arch. Ration. Mech. Anal. 218(3), 1459–1529 (2015) Dodson, B., Lawrie, A.: Scattering for the radial 3D cubic wave equation. Anal. PDE 8(2), 467–497 (2015) Duyckaerts, T., Kenig, C., Merle, F.: Universality of the blow-up profile for small radial type \(\rm II\) blow-up solutions of the energy critical wave equation. J. Eur. Math. Soc. (JEMS) 13(3), 533–599 (2011) Duyckaerts, T., Kenig, C., Merle, F.: Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal. 22(3), 639–698 (2012) Duyckaerts, T., Kenig, C., Merle, F.: Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case. J. Eur. Math. Soc. (JEMS) 14(5), 1389–1454 (2012) Duyckaerts, T., Kenig, C., Merle, F.: Classification of radial solutions of the focusing, energy critical wave equation. Cambridge J. Math. 1(1), 75–144 (2013) Duyckaerts, T., Kenig, C., Merle, F.: Scattering for radial, bounded solutions of focusing supercritical wave equations. To appear in I.M.R.N, Preprint (2012) Duyckaerts, T., Roy, T.: Blow-up of the critical sobolev norm for nonscattering radial solutions of supercritical wave equations on. ArXiv e-prints, (2015) Duyckaerts, T., Yang, J.: Blow-up of a critical sobolev norm for energy-subcritical and energy-supercritical wave equations. Arxiv e-prints, (2017) Geba, D.-A., Nakanishi, K., Rajeev, S.G.: Global well-posedness and scattering for Skyrme wave maps. Commun. Pure Appl. Anal. 11(5), 1923–1933 (2012) Geba, D.-A., Rajeev, S.G.: A continuity argument for a semilinear Skyrme model. Electron. J. Diff. Eq. 86, 9 (2010) Geba, D.-A., Rajeev, S.G.: Nonconcentration of energy for a semilinear Skyrme model. Ann. Phys. 325(12), 2697–2706 (2010) Geba, D.-A., Grillakis, M.G.: An introduction to the theory of wave maps and related geometric problems. World Scientific Publishing Co., Pte. Ltd., Hackensack (2017) Geba, D.-A., Grillakis, M.G.: Large data global regularity for the classical equivariant Skyrme model. Discrete Contin. Dyn. Syst. 38(11), 5537–5576 (2018) Kapitanskiĭ, L. V., Ladyzhenskaya, O. A.: The Coleman principle for finding stationary points of invariant functionals. volume 127, pages 84–102. Boundary value problems of mathematical physics and related questions in the theory of functions, 15 (1983) Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006) Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008) Kenig, C., Merle, F.: Radial solutions to energy supercritical wave equations in odd dimensions. Discrete Contin. Dyn. Syst. 31(4), 1365–1381 (2011) Kenig, C.E., Merle, F.: Scattering for \(\dot{H}^{1/2}\) bounded solutions to the cubic, defocusing NLS in 3 dimensions. Trans. Am. Math. Soc. 362(4), 1937–1962 (2010) Kenig, C.E., Merle, F.: Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications. Am. J. Math. 133(4), 1029–1065 (2011) Kenig, C., Lawrie, A., Liu, B., Schlag, W.: Channels of energy for the linear radial wave equation. Adv. Math. 285, 877–936 (2015) Kenig, C., Lawrie, A., Liu, B., Schlag, W.: Stable soliton resolution for exterior wave maps in all equivariance classes. Adv. Math. 285, 235–300 (2015) Kenig, C.E., Lawrie, A., Schlag, W.: Relaxation of wave maps exterior to a ball to harmonic maps for all data. Geom. Funct. Anal. 24(2), 610–647 (2014) Killip, R., Visan, M.: Energy-supercritical NLS: critical \(\dot{H}^s\)-bounds imply scattering. Comm. Partial Diff. Eq. 35(6), 945–987 (2010) Killip, R., Visan, M.: The defocusing energy-supercritical nonlinear wave equation in three space dimensions. Trans. Am. Math. Soc. 363(7), 3893–3934 (2011) Lawrie, A.: Conditional global existence and scattering for a semi-linear Skyrme equation with large data. Comm. Math. Phys. 334(2), 1025–1081 (2015) Lawrie, A., Sung-Jin, O.H., Shahshahani, S.: Profile decompositions for wave equations on hyperbolic space with applications. Math. Ann. 365(1–2), 707–803 (2016) Lawrie, A., Sung-Jin, O.H., Shahshahani, S.: Stability of stationary equivariant wave maps from the hyperbolic plane. Am. J. Math. 139(4), 1085–1147 (2017) Lawrie, A., Schlag, W.: Scattering for wave maps exterior to a ball. Adv. Math. 232(1), 57–97 (2013) Li, D.: Global global well-posedness of hedgehog solutions for the (3+1) Skyrme model. Preprint, (2012) Lindblad, H., Sogge, C.D.: On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130(2), 357–426 (1995) Manton, N., Sutcliffe, P.: Topological solitons. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2004) McLeod, J.B., Troy, W.C.: The Skyrme model for nucleons under spherical symmetry. Proc. Roy. Soc. Edinburgh Sect. A 118(3–4), 271–288 (1991) Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004) Rodriguez, C.: Scattering for radial energy-subcritical wave equations in dimensions 4 and 5. Comm. Partial Diff. Eq. 42(6), 852–894 (2017) Rodriguez, C.: Soliton resolution for equivariant wave maps on a wormhole. Comm. Math. Phys. 359(1), 375–426 (2018) Rodriguez, C.: Soliton resolution for corotational wave maps on a wormhole. Int. Math. Res. Not. IMRN 15, 4603–4706 (2019) Schlag, W., Soffer, A., Staubach, W.: Decay for the wave and Schrödinger evolutions on manifolds with conical ends. I. Trans. Amer. Math. Soc. 362(1), 19–52 (2010) Schlag, W., Soffer, A., Staubach, W.: Decay for the wave and Schrödinger evolutions on manifolds with conical ends. II. Trans. Amer. Math. Soc. 362(1), 289–318 (2010) Shatah, J.: Weak solutions and development of singularities of the \({\rm SU}(2)\) \(\sigma \)-model. Comm. Pure Appl. Math. 41(4), 459–469 (1988) Skyrme, T.H.R.: Selected Papers with Commentary of Tony Hilton Royle Skyrme, vol. 3. World Scientific, New York (1994) Sogge, C.D.: Lectures on non-linear wave equations, 2nd edn. International Press, Boston (2008) Turok, N., Spergel, D.: Global texture and the microwave background. Phys. Rev. Lett. 64(23), 2736–2739 (1990)