Chuyển giao nhiệt và giảm áp suất của R-410A trong các ống nhôm đa cổng phẳng

Heat and Mass Transfer - Tập 54 - Trang 523-535 - 2017
Nae-Hyun Kim1
1Department of Mechanical Engineering, Incheon National University, Incheon, Republic of Korea

Tóm tắt

Các bộ trao đổi nhiệt được hàn bằng nhôm có ống đa cổng phẳng đang được sử dụng làm bộ ngưng tụ cho điều hòa không khí dân dụng. Trong nghiên cứu này, các thử nghiệm ngưng tụ R-410A đã được thực hiện trong bốn ống đa cổng với đường kính thủy lực dao động từ 0.78 đến 0.95 mm. Phạm vi thử nghiệm bao gồm lưu lượng khối từ 100 đến 400 kg/m2 s và lưu lượng nhiệt ở mức 3 kW/m2, đây là các điều kiện vận hành điển hình của điều hòa không khí dân dụng. Kết quả cho thấy cả hệ số truyền nhiệt và sự sụt giảm áp suất đều tăng lên khi đường kính thủy lực giảm. Ảnh hưởng của đường kính thủy lực đến truyền nhiệt ngưng tụ lớn hơn rất nhiều so với các dự đoán từ các mối tương quan hiện có trong phạm vi điều tra. So sánh dữ liệu với các mối tương quan cho thấy một số mối tương quan của ống viễn thông và ống siêu viễn thông dự đoán hợp lý hệ số truyền nhiệt. Tuy nhiên, các mối tương quan của ống viễn thông đã dự đoán quá cao dữ liệu về sự sụt giảm áp suất.

Từ khóa

#ngưng tụ #truyền nhiệt #áp suất #ống đa cổng #R-410A #điều hòa không khí

Tài liệu tham khảo

Webb RL, Kim N-H (2005) Principles of enhanced heat transfer, 2nd edn. Taylor and Francis Pub, Milton Park Yang CY, Webb RL (1996) Condensation of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins. Int J Heat Mass Trans 39(4):791–800 Webb RL, Yang CY (1995) A comparison of R-12 and R-134a condensation inside small extruded aluminum plain and micro-fin tubes. IMechE C4961053195:77–86 Yang CY, Webb RL (1996) Frictional pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins. Int J Heat Mass Trans 39(4):801–809 Chang YP, Tsai R, Hwang JW (1997) Condensing heat transfer characteristics of aluminum flat tube. Applied Therm Eng 17(11):1055–1065 Wang W-WW, Radcliff TD, Christensen RN (2002) A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition. Exp Thermal Fluid Sci 26:473–485 Zhang M, Webb RL (2001) Correlation of two-phase friction for refrigerants in small-diameter tubes. Exp Thermal Fluid Sci 25:131–139 Kim NH, Cho JP, Youn B (2003) Condensation of R-22 and R-410A in flat aluminum extruded tubes. Int J Refrig 26:830–839 Webb RL, Ermis K (2001) Effect of hydraulic diameter on condensation of R-134A in flat, extruded aluminum tubes. J Enhanced Heat Trans 8:77–90 Koyama S, Kuwahara K, Nakashita K, Yamamoto K (2003) An experimental study on condensation of R134a in a multi-port extruded tube. Int J Refrig 24:425–432 Cavallini A, Del Col D, Doretti L, Matkovic M, Rossetto L, Zilio C (2005) Condensation heat transfer and pressure gradient inside multiport minichannels. Heat Trans Eng 26(3):45–55 Bandhauer TM, Agarwal A, Garimella S (2006) Measurement and modeling of condensation heat transfer coefficients in circular microchannels. J Heat Transf 128:1050–1059 Agarwal A, Bandhauer TM, Garimella S (2010) Measurement and modeling of condensation heat transfer in non-circular microchannels. Int J Refrig 33:1169–1179 Park JE, Vakili-Farahani F, Consilini L, Thome JR (2011) Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E) versus R134a and R236fa. Exp Thermal Fluid Sci 35:442–454 Sakamatapan K, Kaew-On J, Dalkilic AS, Mahian O, Wongwises S (2013) Condensation heat transfer characteristics of R-134a flowing inside the multiport channels. Int J Heat Mass Trans 64:976–985 Illan-Gomez F, Lopez-Belchi A, Garcia-Cascales JR, Vera-Garcia F (2015) Experimental two-phase heat transfer coefficient and friction pressure drop inside mini-channels during condensation with R1234yf and R134a. Int J Refrig 51:12–23 Lopez-Belchi A, Illan-Gomez F, Garcia-Cascales JR, Vera-Garcia F (2015) Heat transfer coefficient during condensation inside a minichannel multiport tube with R32 and R410A as working fluids. Sci Tech Built Env 21:535–544 Park CY, Hrnjak PS (2009) CO2 Flow condensation heat transfer and pressure drop in multiport microchannels at low temperatures. Int J Refrig 32:1129–1139 Heo J, Park H, Yun R (2013) Condensation heat transfer and pressure drop characteristics of CO2 in a microchannel. Int J Refrig 36:1657–1668 Fernando P, Palm B, Ameel T, Lundquist P, Granyd E (2008) A minichannel aluminum tube heat exchanger - part III: condenser performance with propane. Int J Refrig 31:696–708 Akers WW, Deans HA, Crosser OK (1959) Condensation heat transfer within horizontal tubes. Chem Eng Progress Symp Series 55(29):171–176 Shah MM (1979) A general correlation for heat transfer during film condensation in tubes. Int J Heat Mass Trans 22(4):547–556 Yang CY, Webb RL (1997) A predictive model for condensation in small hydraulic diameter tubes having axial micro-fins. J Heat Trans 119:776–782 Moser K, Webb RL, Na B (1998) A new equivalent Reynolds number model for condensation in smooth tubes. J Heat Trans 120:410–417 Haraguchi H, Koyama S, Fujii T (1994) Condensation of refrigerant HCFC22, HFC134a and HCFC123 in a horizontal smooth tube (2nd report, proposal of empirical expressions for the local heat transfer coefficient). Trans JSME (B) 60(574):245–252 (in Japanese) Mishima K, Hibiki T (1996) Some characteristics of air-water flow in small diameter vertical tubes. Int J Multiphase Flow 22:703–712 Webb RL, Zhang M, Narayanamurthy R (1998) Condensation heat transfer in small diameter tubes. In Proc 11th IHTC 6:403–408 Yun JH, Jeong JW (2016) A review of prediction methods for two-phase pressure loss in mini/micro channels. Int J Air-Cond Refrig 24(1):1630002 Kim NH (2015) Condensation and evaporation tests of newly developed microfin tubes. InternalReport to LG Electronics Kim NH, Lee EJ, Byun HW (2014) Condensation heat transfer and pressure drop in flattened smooth tubes having different aspect ratios. Exp Thermal Fluid Sci 46:245–253 Wilson EE (1915) A basis for rational design of heat transfer apparatus. Trans ASME 37:47–70 Collier JG, Thome JR (1994) Convective boiling and condensation, 3rd edn. Oxford University Press, Oxford Zivi SM (1964) Estimation of steady state steam void fraction by means of principle of minimum entropy production. J Heat Trans 86:237–252 Klein SJ, McClintock FA (1953) The description of uncertainties in single sample experiments. Mech Eng 75:3–9 Garimella S (2010) Condensation flow mechanisms in microchannels: basis for pressure drop and heat transfer models. Heat Trans Eng 25(3):104–116 Lopez-Belchi A, Vera-Garcia F, Garcia-Cascales JR (2015) Non-uniform condensation of refrigerant R-134a in multi-channel multi-port tubes: two-phase pressure drop and heat transfer coefficient. J Enhanced Heat Trans 22(5):391–416 Shah MM (2009) An improved and extended general correlation for heat transfer during condensation in plain tubes. Int J HVAC & R Research 15(5):889–913 Dobson MK, Chato JC (1998) Condensation in smooth horizontal tubes. J Heat Trans 120:193–213 Cavallini A, Censi G, Del Col D, Doretti L, Longo GA, Rossetto L (2002) Condensation of halogenated refrigerants inside smooth tubes. Int J HVAC & R. Research 8(4):429–451 Thome JR, El Hajal J, Cavallini A (2003) Condensation in horizontal tubes, Part2: new heat transfer model based on flow regimes. Int J Heat Mass Trans 46:3365–3387 Shah MM (2016) A correlation for heat transfer during condensation in mini/micro channels. Int J Refrig 64:187–202 Kim SM, Mudawar I (2012) Flow condensation in parallel micro-channels - part 2: heat transfer results and correlation technique. Int J Heat Mass Trans 55:984–994 Jung D, Radermacher R (1989) Prediction of pressure drop during horizontal annular flow boiling of pure and mixed refrigerants. Int J Heat Mass Trans 32(12):2435–2446 Friedel L (1979) Improved friction pressure drop correlations for horizontal and vertical two phase pipe flow. Paper E2, Europian Two Phase Flow Group Meeting, Ispra Muller-Steinhagen H, Heck K (1986) A simple friction pressure drop correlation for two-phase flow in pipes. Chem Eng Process 20:297–308 Cavallini A, Del Col D, Matkovic M, Rossetto L (2009) Frictional pressure drop during vapor-liquid flow in minichannels: modeling and experimental evaluation. Int J Heat Fluid Flow 30:131–191 Sun L, Mishima K (2009) Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels. Int J Multiphase Flow 35:47–54