Concrete Road Crack Detection Using Deep Learning-Based Faster R-CNN Method
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ale L, Zhang N, Wu H et al (2019) Online proactive caching in mobile edge computing using bidirectional deep recurrent neural network. IEEE Internet Things J 6:5520–5530. https://doi.org/10.1109/JIOT.2019.2903245
Alfarrarjeh A, Trivedi D, Kim SH, Shahabi C (2019) A deep learning approach for road damage detection from smartphone images. In: Proceeding 2018 IEEE international conference on big data, (big data) 2018. pp. 5201–5204. https://doi.org/10.1109/BigData.2018.8621899
Amidi A, Amidi S (2019) CS 230: Recurrent neural networks cheatsheet. https://stanford.edu/~shervine/l/tr/teaching/cs-230/cheatsheet-recurrent-neural-networks. Accessed 16 Mar 2020
Angulo A, Vega-Fernández JA, Aguilar-Lobo LM, et al (2019) Road damage detection acquisition system based on deep neural networks for physical asset management. Lecture Notes in Computer Science (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 11835 LNAI: pp. 3–14. https://doi.org/10.1007/978-3-030-33749-0_1
Cha YJ, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput-Aided Civ Infrastruct Eng 32:361–378. https://doi.org/10.1111/mice.12263
Chen S, Zhan Y, Zhang Y et al (2019) Embedded system for road damage detection by deep convolutional neural network. Math Biosci Eng 16:7982–7994. https://doi.org/10.3934/mbe.2019402
Chun C, Ryu SK (2019) Road surface damage detection using fully convolutional neural networks and semi-supervised learning. Sensors (switzerland) 19:1–15. https://doi.org/10.3390/s19245501
Embacher RA, Snyder MB (2001) Life-cycle cost comparison of asphalt and concrete pavements on low-volume roads case study comparisons. Transp Res Rec. https://doi.org/10.3141/1749-05
Girshick R (2015) Fast R-CNN. In: Proceedings IEEE international conference computer vision 2015 Inter: pp. 1440–1448. https://doi.org/10.1109/ICCV.2015.169
Karpathy A (2016) Convolutional neural networks (CNNs /ConvNets). retrieved CS231n convolutional neural networks for visual recognition. In: https://cs231n.github.io/. Accessed 15 Apr 2020
Khan S, Rahmani H, Shah SAA, Bennamoun M (2018) A guide to convolutional neural networks for computer vision. Synth Lect Comput Vision 8(1):1–207
Maeda H, Sekimoto Y, Seto T et al (2018) Road damage detection and classification using deep neural networks with smartphone images. Comput Civ Infrastruct Eng 33:1127–1141. https://doi.org/10.1111/mice.12387
Naddaf-Sh MM, Hosseini S, Zhang J et al (2019) Real-time road crack mapping using an optimized convolutional neural network. Complexity. https://doi.org/10.1155/2019/2470735
Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149
Saha U (2018) A comprehensive guide to convolutional neural networks. In: Towards data science. https://towardsdatascience.com. Accessed 28 Apr 2019
Srivastava N, Hinton GE, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 5:1929–1958
TensorFlow (2020). https://www.tensorflow.org/. Accessed 16 Mar 2020
Tzutalin (2020) LabelImg. Git code. In: https://github.com/qaprosoft/labelImg. Accessed 28 Apr 2019
Wang W, Wu B, Yang S, Wang Z (2019) Road damage detection and classification with faster R-CNN. In: Proceedings 2018 IEEE international conference on big data, (big data) 2018: pp. 5220–5223. https://doi.org/10.1109/BigData.2018.8622354
Yang S, Fang B, Tang W, et al (2018) Faster R-CNN based microscopic cell detection. In: 2017 International conference on security pattern analysis cybern SPAC 2017 2018-January: pp. 345–350. https://doi.org/10.1109/SPAC.2017.8304302
Zhang K, Cheng HD, Zhang B (2018) Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning. J Comput Civ Eng. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000736
Zhang L, Yang F, Daniel Zhang Y, Zhu YJ (2016) Road crack detection using deep convolutional neural network. In: Proceedings international conference image process ICIP 2016-August: pp.3708–3712. https://doi.org/10.1109/ICIP.2016.7533052