Concrete Road Crack Detection Using Deep Learning-Based Faster R-CNN Method

Springer Science and Business Media LLC - Tập 46 Số 2 - Trang 1621-1633 - 2022
Kemal Hacıefendioğlu1, Hasan Basri Başağa1
1Department of Civil Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ale L, Zhang N, Wu H et al (2019) Online proactive caching in mobile edge computing using bidirectional deep recurrent neural network. IEEE Internet Things J 6:5520–5530. https://doi.org/10.1109/JIOT.2019.2903245

Alfarrarjeh A, Trivedi D, Kim SH, Shahabi C (2019) A deep learning approach for road damage detection from smartphone images. In: Proceeding 2018 IEEE international conference on big data, (big data) 2018. pp. 5201–5204. https://doi.org/10.1109/BigData.2018.8621899

Amidi A, Amidi S (2019) CS 230: Recurrent neural networks cheatsheet. https://stanford.edu/~shervine/l/tr/teaching/cs-230/cheatsheet-recurrent-neural-networks. Accessed 16 Mar 2020

Angulo A, Vega-Fernández JA, Aguilar-Lobo LM, et al (2019) Road damage detection acquisition system based on deep neural networks for physical asset management. Lecture Notes in Computer Science (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 11835 LNAI: pp. 3–14. https://doi.org/10.1007/978-3-030-33749-0_1

Cha YJ, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput-Aided Civ Infrastruct Eng 32:361–378. https://doi.org/10.1111/mice.12263

Chen S, Zhan Y, Zhang Y et al (2019) Embedded system for road damage detection by deep convolutional neural network. Math Biosci Eng 16:7982–7994. https://doi.org/10.3934/mbe.2019402

Chun C, Ryu SK (2019) Road surface damage detection using fully convolutional neural networks and semi-supervised learning. Sensors (switzerland) 19:1–15. https://doi.org/10.3390/s19245501

Embacher RA, Snyder MB (2001) Life-cycle cost comparison of asphalt and concrete pavements on low-volume roads case study comparisons. Transp Res Rec. https://doi.org/10.3141/1749-05

Girshick R (2015) Fast R-CNN. In: Proceedings IEEE international conference computer vision 2015 Inter: pp. 1440–1448. https://doi.org/10.1109/ICCV.2015.169

Karpathy A (2016) Convolutional neural networks (CNNs /ConvNets). retrieved CS231n convolutional neural networks for visual recognition. In: https://cs231n.github.io/. Accessed 15 Apr 2020

Khan S, Rahmani H, Shah SAA, Bennamoun M (2018) A guide to convolutional neural networks for computer vision. Synth Lect Comput Vision 8(1):1–207

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 51:436–444

Maeda H, Sekimoto Y, Seto T et al (2018) Road damage detection and classification using deep neural networks with smartphone images. Comput Civ Infrastruct Eng 33:1127–1141. https://doi.org/10.1111/mice.12387

Naddaf-Sh MM, Hosseini S, Zhang J et al (2019) Real-time road crack mapping using an optimized convolutional neural network. Complexity. https://doi.org/10.1155/2019/2470735

Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

Saha U (2018) A comprehensive guide to convolutional neural networks. In: Towards data science. https://towardsdatascience.com. Accessed 28 Apr 2019

Srivastava N, Hinton GE, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 5:1929–1958

TensorFlow (2020). https://www.tensorflow.org/. Accessed 16 Mar 2020

Tzutalin (2020) LabelImg. Git code. In: https://github.com/qaprosoft/labelImg. Accessed 28 Apr 2019

Wang W, Wu B, Yang S, Wang Z (2019) Road damage detection and classification with faster R-CNN. In: Proceedings 2018 IEEE international conference on big data, (big data) 2018: pp. 5220–5223. https://doi.org/10.1109/BigData.2018.8622354

Yang S, Fang B, Tang W, et al (2018) Faster R-CNN based microscopic cell detection. In: 2017 International conference on security pattern analysis cybern SPAC 2017 2018-January: pp. 345–350. https://doi.org/10.1109/SPAC.2017.8304302

Zhang K, Cheng HD, Zhang B (2018) Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning. J Comput Civ Eng. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000736

Zhang L, Yang F, Daniel Zhang Y, Zhu YJ (2016) Road crack detection using deep convolutional neural network. In: Proceedings international conference image process ICIP 2016-August: pp.3708–3712. https://doi.org/10.1109/ICIP.2016.7533052

Zhou S, Song W (2020) Deep learning-based roadway crack classification using laser-scanned range images: a comparative study on hyperparameter selection. Autom Constr 114:103171. https://doi.org/10.1016/j.autcon.2020.103171