Concerning P-frames and the Artin–Rees property

Mostafa Abedi1
1Esfarayen University of Technology, Esfarayen, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abedi, M.: Concerning real-closed ideals in $${\cal{R}}L$$ and SV-frames. Topol. Appl. 258, 402–414 (2019)

Abedi, M.: Some Notes on $$z$$-ideal and $$d$$-ideal in $${\cal{R}}L$$. Bull. Iran. Math. Soc. 46, 593–611 (2020)

Abedi, M.: Rings of quotients of the ring $${\cal{R}}L$$. Houst. J. Math. (Accepted)

Anderson, D.F., Badawi, A.: Divisibility conditions in commutative rings with zerodivisors. Commun. Algebra 3, 4031–4047 (2002)

Azarpanah, F., Afrroz, S.: $$P$$-spaces and Artin–Rees property. Adv. Math. Model. 2, 61–76 (2012)

Ball, R.N., Walters-Wayland, J.: $$C$$- and $$C^*$$-quotients in pointfree topology. Diss. Math. (Rozpr. Mat.) 412, 1–62 (2002)

Banaschewski, B.: The real numbers in pointfree topology, Textos de Matemática, Série B, vol. 12. Departamento de Matemática da Universidade de Coimbra, Coimbra (1997)

Banaschewski, B., Hong, S.S.: Completeness properties of function rings in pointfree topology. Comment. Math. Univ. Carol. 44, 245–259 (2003)

Dube, T., Walters-Wayland, J.: Coz-onto frame maps and some applications. Appl. Categ. Struct. 15, 119–133 (2007)

Dube, T.: Some ring-theoretic properties of almost $$\text{ P }$$-frames. Algebra Universalis 60, 145–162 (2009)

Dube, T.: Concerning P-frames, essential P-frames and strongly zero-dimensional frames. Algebra Universalis 69, 115–138 (2009)

Dube, T.: Notes on point free disconnectivity with a ring-theoretic slant. Appl. Categ. Struct. 18, 55–72 (2010)

Dube, T.: A note on the socle of certain types of $$f$$-rings. Bull. Iran. Math. Soc. 2, 517–528 (2012)

Dube, T., Ighedo, O.: On lattices of $$z$$-ideals of function rings. Math. Slovaca 68, 271–284 (2018)

Gillman, L., Jerison, M.: Rings of Continuous Functions. Springer, Berlin (1976)

Mason, G.: $$z$$-Ideals and prime ideals. J. Algebra 26, 280–297 (1973)

Picado, J., Pultr, A.: Frames and Locales: Topology without Points. Frontiers in Mathematics, Springer, Basel (2012)

Rees, D.: Two classical theorems of ideal theory. Proc. Camb. Philos. Soc. 52, 155–157 (1956)