Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery

Chemical Reviews - Tập 119 Số 18 - Trang 10520-10594 - 2019
Xin Yang1, Yifei Wang1, Ryan Byrne2, Gisbert Schneider2, Shengyong Yang1
1State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
2ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1038/534314a

10.1002/cncr.31522

10.1001/jamainternmed.2018.3931

10.1038/nrd.2017.70

Mccarthy J., 1969, Machine Intelligence

Barr A., 1982, Handbook of Artificial Intelligence

Popovic D., 1994, Methods and Tools for Applied Artificial Intelligence

Bobrow D. G., 1968, Semantic Information Processing

10.1145/365153.365168

10.1016/0885-064X(88)90020-9

10.1109/72.80290

Rumelhart D., 1986, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 10.7551/mitpress/5236.001.0001

10.1016/0022-2836(88)90564-5

10.1063/1.4822649

10.1111/j.2517-6161.1977.tb01600.x

Pearl, J. Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning. InProceedings of the 7th Conference of the Cognitive Science Society, 1985, 329–334.

Cortes C., 1995, Mach. Learn., 20, 273

10.1016/S0020-7373(87)80053-6

10.1080/17460441.2018.1465407

10.1038/nature16961

10.1126/science.aam6960

Batsford, T. Calculating Optimal Jungling Routes in DOTA2 using neural networks and genetic algorithms.Game Behaviour2014, 1, https://computing.derby.ac.uk/ojs/index.php/gb/article/view/14 (accessed June 20, 2019).

10.1021/ja01280a022

10.1021/ja01062a035

10.1002/jps.2600560119

10.1038/207981a0

10.1021/ci980029a

10.1002/bms.1200030402

10.1021/ja00810a047

10.1021/jm00250a008

10.1021/ja00834a032

10.1126/science.180.4084.417

Bai R., 1991, J. Biol. Chem., 266, 15882, 10.1016/S0021-9258(18)98491-7

Paull K. D., 1992, Cancer Res., 52, 3892

10.1016/S0006-291X(05)81591-8

10.1037/h0042519

10.1093/nar/19.7.1593

10.1080/07391102.1989.10506540

10.1093/nar/18.16.4797

10.1093/nar/19.2.313

10.1073/pnas.86.1.152

10.1016/0022-2836(90)90154-E

10.1093/protein/2.7.521

10.1126/science.1411538

10.1093/bioinformatics/10.6.635

10.1016/S0006-3495(94)80782-9

10.1002/minf.201880131

10.1109/5254.708428

Ho, T. K. Random Decision Forests. InProceedings of 3rd International Conference on Document Analysis and Recognition, 1995, 278–282.

10.1002/pro.5560030924

10.1002/(SICI)1097-0282(199601)38:1<13::AID-BIP2>3.0.CO;2-Z

Dahl G. E., 2014, arXiv:1406.1231

10.3389/fenvs.2015.00080

10.1016/j.drudis.2018.01.039

10.1002/minf.201501008

10.1016/j.drudis.2017.08.010

10.4155/fmc-2018-0161

10.1038/s41573-019-0024-5

Goodfellow I., 2016, Deep Learning

Murphy K. P., 2012, Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine Learning

Bishop C. M., 2006, Pattern Recognition and Machine Learning

10.1146/annurev-neuro-080317-061948

Hosmer D. W., 2013, Applied Logistic Regression, 10.1002/9781118548387

10.1023/A:1010933404324

Lewis, D. D. Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval. InEuropean Conference on Machine Learning, 1998, 4–15.

Joachims, T. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. InEuropean Conference on Machine Learning, 1998, 137–142.

10.2307/2346830

10.1007/BF02289588

10.1016/0169-7439(87)80084-9

10.1109/5.58325

Chapelle O., 2006, Semi-Supervised Learning, Ser. Adaptive Computation and Machine Learning

Yarowsky D., 1995, 33rd Annual Meeting of the Association for Computational Linguistics, 189, 10.3115/981658.981684

Blum, A.; Mitchell, T. Combining Labeled and Unlabeled Data with Co-Training. InProceedings of the Eleventh Annual Conference on Computational Learning Theory, 1998, 92–100.

Joachims, T. Transductive Inference for Text Classification Using Support Vector Machines. InProceedings of the Sixteenth International Conference on Machine Learning, 1999, 200–209.

Zhou D., 2004, Advances in Neural Information Processing Systems 6, 321

10.1016/j.drudis.2014.12.004

10.4155/fmc-2016-0197

10.1038/s41598-018-31395-5

Lewis, D. D.; Gale, W. A. A Sequential Algorithm for Training Text Classifiers. InProceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1994, 3–12.

Atlas L. E., 1990, Advances in Neural Information Processing Systems 2, 566

10.1007/BF00993277

Hoi, S. C.; Jin, R.; Lyu, M. R. Large-Scale Text Categorization by Batch Mode Active Learning. InProceedings of the 15th International Conference on World Wide Web, 2006, 633–642.

Settles, B.Active Learning Literature Survey; Computer Sciences Technical Report 1648; 1994; Vol. 15, pp 1–67.

Campbell, C.; Cristianini, N.; Smola, A. Query Learning with Large Margin Classifiers. InProceedings of the Seventeenth International Conference on Machine Learning, 2000, 111–118.

Tong S., 2001, J. Mach. Learn. Res., 2, 45

10.1039/C5SC04272K

10.1021/ci025620t

10.1021/acs.jcim.5b00332

10.1021/jm400099d

10.1021/ci700085q

Sutton R. S., 1998, Reinforcement Learning: An Introduction

10.1038/nature14236

10.1007/BF00992698

Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow: Combining Improvements in Deep Reinforcement Learning. InThirty-Second AAAI Conference on Artificial Intelligence, 2017.

10.1016/j.neunet.2009.12.004

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep Reinforcement Learning. InInternational Conference on Machine Learning, 2016, 1928–1937.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust Region Policy Optimization. InInternational Conference on Machine Learning, 2015, 1889–1897.

10.1613/jair.613

10.1109/TKDE.2009.191

Torrey L., 2010, Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques

Bickel, S.; Brückner, M.; Scheffer, T. Discriminative Learning for Differing Training and Test Distributions. InProceedings of the 24th International Conference on Machine Learning, 2007, 81–88.

Quattoni, A.; Collins, M.; Darrell, T. Transfer Learning for Image Classification with Sparse Prototype Representations. In2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, 1–8.

Wang, C.; Mahadevan, S. Manifold Alignment Using Procrustes Analysis. InProceedings of the 25th International Conference on Machine Learning, 2008, 1120–1127.

10.1109/TPAMI.2006.79

Bonilla E. V., 2008, Advances in Neural Information Processing Systems, 153

Stark, M.; Goesele, M.; Schiele, B. A Shape-Based Object Class Model for Knowledge Transfer. In2009 IEEE 12th International Conference on Computer Vision, 2009, 373–380.

Wang, D.; Li, Y.; Lin, Y.; Zhuang, Y. Relational Knowledge Transfer for Zero-Shot Learning. InThirtieth AAAI Conference on Artificial Intelligence, 2016, 2145–2151.

Yao, Y.; Doretto, G. Boosting for Transfer Learning with Multiple Sources. In2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, 1855–1862.

Kovac, K.Multitask Learning for Bayesian Neural Networks. Master’s Thesis, University of Toronto, 2005.

10.1023/A:1007465528199

Sahami, M. Learning Limited Dependence Bayesian Classifiers. InProceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996, 335–338.

Langley, P.; Iba, W.; Thompson, K. An Analysis of Bayesian Classifiers. InProceedings of the Tenth National Conference on Artificial Intelligence, 1992, 223–228.

10.1023/A:1007413511361

Zhang, H.; Ling, C. X. Learnability of Augmented Naive Bayes in Nominal Domains. InProceedings of the 18th International Conference on Machine Learning, 2001, 617–623.

Rish I., 2001, IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, 41

Kononenko I., 1991, European Working Session on Learning, 206

Jensen F. V., 1996, An Introduction to Bayesian Networks

Heckerman D., 1998, Learning in Graphical Models

10.1016/0004-3702(86)90072-X

10.1089/106652700750050961

10.1093/bioinformatics/18.suppl_1.S216

10.1093/bioinformatics/bth448

Margaritis D., 2000, Advances in Neural Information Processing Systems, 505

10.1016/j.jsc.2004.11.007

10.1007/BF00153759

Wettschereck D., 1997, Artif. Intell. Rev., 11, 273, 10.1023/A:1006593614256

10.1109/TIT.1967.1053964

10.1002/jcc.21218

10.1021/ci060149f

10.24327/ijrsr.2018.0904.1997

10.1080/09720502.2018.1456825

Tang, L.; Pan, H.; Yao, Y. K-Nearest Neighbor Regression with Principal Component Analysis for Financial Time Series Prediction. InProceedings of the 2018 International Conference on Computing and Artificial Intelligence, 2018, 127–131.

Chaudhuri K., 2014, Advances in Neural Information Processing Systems, 3437

Berchtold, S.; Böhm, C.; Keim, D. A.; Kriegel, H.P. A Cost Model for Nearest Neighbor Search in High-Dimensional Data Space. Inthe sixteenth ACM SIGACT-SIGMOD-SIGART Symposium, 1997, 78–86.

Arya, S.; Mount, D. M.; Narayan, O. Accounting for Boundary Effects in Nearest Neighbor Searching. InProceedings of the Eleventh Annual Symposium on Computational Geometry, 1995, 336–344.

Thilagaraj M., 2018, Intelligent Engineering Informatics

10.1109/TKDE.2006.38

Qiu, B.Z.; Yue, F.; Shen, J.Y. BRIM: An Efficient Boundary Points Detecting Algorithm. InPacific-Asia Conference on Knowledge Discovery and Data Mining, 2007, 761–768.

10.1109/TNNLS.2016.2614896

10.1073/pnas.1621481114

MOODY J., 1988, Proceedings of Connectionist Models Summer School

10.1162/neco.1989.1.2.281

Powel, M. J. D. Radial Basis Functions Approximations to Polynomials. InProceedings of 12th Biennial Numerical Analysis Conference, 1988, 223–241.

Powell, M. Radial Basis Functions for Multivariable Interpolation: A Review. InIMA Conference on Algorithms for the Approximation of Functions and Data, 1987, 143–167.

10.1162/neco.1991.3.2.246

10.1109/72.80341

Wettschereck D., 1992, Advances in Neural Information Processing Systems, 1133

Schwenker, F.; Kestler, H.; Palm, G.; Hoher, M. Similarities of LVQ and RBF Learning-A Survey of Learning Rules and the Application to the Classification of Signals from High-Resolution Electrocardiography. InProceedings of IEEE International Conference on Systems, Man and Cybernetics, 1994, 646–651.

10.1109/72.712154

Schwenker F., 2000, Neural Netw. World., 10, 473

10.2174/092986709787002655

10.1073/pnas.1320001111

10.1007/BF02332159

Miikkulainen R., 1992, Connectionist Natural Language Processing

10.1016/j.neunet.2012.09.018

10.1109/72.846729

Kohonen T., 2011, International Workshop on Self-Organizing Maps, 16, 10.1007/978-3-642-21566-7_2

10.1145/2347736.2347755

Weston J., 2001, Advances in Neural Information Processing Systems, 668

10.1016/j.knosys.2015.02.009

Fenn, M.; Guarracino, M.; Pi, J.; Pardalos, P. M. Raman Spectroscopy Using a Multiclass Extension of Fisher-Based Feature Selection Support Vector Machines (FFS-SVM) for Characterizing In-Vitro Apoptotic Cell Death Induced by Paclitaxel. InInternational Conference on Learning and Intelligent Optimization, 2014, 306–323.

10.1109/ACCESS.2017.2699662

10.1016/j.patcog.2017.02.011

10.1007/s00521-012-1108-x

10.1016/j.neucom.2016.11.006

10.1016/S0925-2312(03)00435-1

10.1016/j.ins.2018.12.026

Lauer F., 2011, J. Mach. Learn. Res., 12, 2293

10.1023/A:1009715923555

10.1023/A:1022643204877

Quinlan J. R., 1979, Expert Systems in the Micro Electronics Age

Quinlan J., 1983, Machine Learning: An Artificial Intelligence Approach

Quinlan J., 1993, C4.5: Programs for Machine Learning

Breiman L., 1984, Classification and Regression Trees

10.1038/nbt0908-1011

10.1016/S0165-0114(00)00118-4

10.1023/A:1016409317640

Bradford, J. P.; Kunz, C.; Kohavi, R.; Brunk, C.; Brodley, C. E. Pruning Decision Trees with Misclassification Costs. InEuropean Conference on Machine Learning, 1998, 131–136.

Kotsiantis S. B., 2007, Emerging Artificial Intelligence Applications in Computer Engineering

Caruana, R.; Niculescu-Mizil, A. An Empirical Comparison of Supervised Learning Algorithms. InProceedings of the 23rd International Conference on Machine Learning, 2006, 161–168.

Zhang C., 2012, Ensemble Machine Learning: Methods and Applications, 10.1007/978-1-4419-9326-7

10.1023/A:1018054314350

Schapire R. E., 2003, Nonlinear Estimation and Classification

10.1016/S0893-6080(05)80023-1

10.1006/jcss.1997.1504

10.1214/aos/1013203451

10.1016/S0167-9473(01)00065-2

10.1007/BF00117832

Koren, Yehuda.Bellkor Solution to the Netflix Grand Prize. https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf (accessed June 20, 2019).

10.1016/j.chemolab.2007.02.001

10.1145/3136625

10.1109/TKDE.2006.45

Jolie I., 1986, Principal Component Analysis

10.1109/34.908974

Fukunaga K., 1990, Introduction to Statistical Pattern Classification

10.1016/S0031-3203(00)00162-X

Li H., 2004, Advances in Neural Information Processing Systems, 97

10.1126/science.290.5500.2323

10.1126/science.290.5500.2319

Maaten L. v. d., 2008, J. Mach. Learn. Res., 9, 2579

10.1016/S0031-3203(03)00044-X

10.1037/h0071325

Rao C. R., 1964, Sankhya: Ind. J. Stat. A, 26, 329

Bocchieri, E.; Wilpon, J. Discriminative Analysis for Feature Reduction in Automatic Speech Recognition. InProceedings of the 1992 IEEE International Conference on Acoustics, Speech and Signal Processing, 1992, 501–504.

10.1016/S0031-3203(97)00108-8

Sun, D. X. Feature Dimension Reduction Using Reduced-Rank Maximum Likelihood Estimation for Hidden Markov Models. InProceeding of Fourth International Conference on Spoken Language Processing. ICSLP’96, 1996, 244–247.

Van Der Maaten L., 2014, J. Mach. Learn. Res., 15, 3221

Burges C., 2005, Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers

Lee J. A., 2007, Nonlinear Dimensionality Reduction, 10.1007/978-0-387-39351-3

Saul L. K., 2006, Semisupervised Learning

Venna, J.Dimensionality Reduction for Visual Exploration of Similarity Structures. Doctoral Dissertation, Helsinki University of Technology, 2007.

Van Der Maaten L., 2009, J. Mach. Learn. Res., 10, 66

10.1016/j.jmgm.2011.12.006

Wasserman P. D., 1989, Neural Computing: Theory and Practice

Hertz J., 1991, Introduction to the Theory of Neural Computation

Smith, M. Neural Networks for Statistical Modeling. InProceedings Of The 19th Annual SAS Users Group International Conference, 1994, 1538–1550.

10.1038/323533a0

10.1145/175247.175256

10.1038/scientificamerican0992-144

Kingma D. P., 2015, arXiv:1412.6980

Werbos P. J., 1994, The Roots of Backpropagation: from Ordered Derivatives to Neural Networks and Political Forecasting

10.2514/3.25422

10.1038/nature14539

10.1162/neco.1989.1.4.541

Goodfellow, I. J.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout Networks. InInternational Conference on Machine Learning, 2013, 1319–1327.

Srivastava N., 2014, J. Mach. Learn. Res., 15, 1929

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 770–778.

10.1186/1471-2105-7-125

Hochreiter S., 2001, A Field Guide to Dynamical Recurrent Neural Networks

10.1162/neco.1997.9.8.1735

Chung J., 2014, NIPS 2014 Workshop on Deep Learning

Grefenstette, E.; Hermann, K. M.; Suleyman, M.; Blunsom, P. Learning to Transduce with Unbounded Memory. InNIPS’15 Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015, 1828–1836.

Hinton, G. E.; Sejnowski, T. J. Optimal Perceptual Inference. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1983, 448–453.

Smolensky P., 1986, Parallel Distributed Processing: Explorations in the Microstructure of Cognition

10.1162/089976602760128018

Salakhutdinov R., 2009, J. Mach. Learn. Res., 24, 448

10.1162/neco.2006.18.7.1527

Welling M., 2005, Artificial Intelligence and Statistics

Vincent P., 2010, J. Mach. Learn. Res., 11, 3371

Kingma D. P., 2013, arXiv:1312.6114

Zhang, B.; Xiong, D.; Su, J.; Duan, H.; Zhang, M. Variational Neural Machine Translation. InProceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, 521–530.

Makhzani A., 2015, arXiv:1511.05644

LeCun Y., 1995, The Handbook of Brain Theory and Neural Networks

LeCun Y., 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 253, 10.1109/ISCAS.2010.5537907

10.1007/s11042-017-4585-1

Srivastava R. K., 2015, Advances in Neural Information Processing Systems, 2377

Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; Weinberger, K. Q. Deep Networks with Stochastic Depth. InEuropean Conference on Computer Vision, 2016, 646–661.

Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K. Q. Densely Connected Convolutional Networks. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 4700–4708.

Bergstra J., 2012, J. Mach. Learn. Res., 13, 281

Snoek J., 2012, Advances in Neural Information Processing Systems, 2951

Snoek, J.; Rippel, O.; Swersky, K.; Kiros, R.; Satish, N.; Sundaram, N.; Patwary, M.; Prabhat, M.; Adams, R. Scalable Bayesian Optimization Using Deep Neural Networks. InInternational Conference on Machine Learning, 2015, 2171–2180.

Suganuma, M.; Shirakawa, S.; Nagao, T. A Genetic Programming Approach to Designing Convolutional Neural Network Architectures. InProceedings of the Genetic and Evolutionary Computation Conference, 2017, 497–504.

Sabour S., 2017, Advances in Neural Information Processing Systems, 3856

Goodfellow I. J., 2014, Advances in Neural Information Processing Systems, 2672

Salimans T., 2016, Advances in Neural Information Processing Systems, 2234

Arjovsky M., 2017, arXiv:1701.07875

Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A. P.; Tejani, A.; Totz, J.; Wang, Z. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. InProceedings of the IEEE conference on computer vision and pattern recognition, 2017, 4681–4690.

Bahdanau D., 2014, arXiv:1409.0473

Graves A., 2013, arXiv:1308.0850

Luong, M.T.; Pham, H.; Manning, C. D. Effective Approaches to Attention-Based Neural Machine Translation. InProceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, 1412–1421.

10.1038/s42256-019-0030-7

10.1109/TKDE.2006.22

Todeschini R., 2008, Handbook of Molecular Descriptors

10.1016/j.drudis.2018.05.010

Todeschini R., 2009, Molecular Descriptors for Chemoinformatics: Vol. I: Alphabetical Listing/Vol. II: Appendices, References, 10.1002/9783527628766

Unterthiner T., 2014, Proceedings of the Deep Learning Workshop at NIPS, 1

Duvenaud D. K., 2015, Advances in Neural Information Processing Systems, 2224

10.1021/acscentsci.7b00572

10.1002/minf.201700123

Provost F., 2000, Proceedings of the AAAI’2000 Workshop on Imbalanced Data Sets, 1

10.1613/jair.606

10.1016/j.datak.2009.08.005

10.1021/ci700157b

10.1613/jair.953

Maciejewski T., 2011, 2011 IEEE Symposium on Computational Intelligence and Data Mining, 104

10.1080/07391102.2014.998710

10.1021/acscentsci.6b00367

10.1021/ci400737s

10.1007/s10822-008-9192-9

10.1016/j.jmgm.2008.08.004

10.1021/jm0608356

Reed S., 2014, arXiv:1412.6596

Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; Wang, X. Learning from Massive Noisy Labeled Data for Image Classification. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 2691–2699.

10.1038/nrd3139

10.1021/ci200528d

10.1016/0022-2836(82)90153-X

10.1038/s41586-019-0917-9

10.1021/jm025507u

10.1093/protein/7.1.39

10.1006/jmbi.1996.0477

10.1023/A:1008005918983

10.1002/jcc.540040211

10.1021/acs.accounts.6b00491

10.1038/sj.bjp.0707515

10.1146/annurev.biophys.36.040306.132550

10.1093/bioinformatics/btq112

10.1021/ci400510e

10.1002/wcms.1225

10.1021/ci100369f

10.1021/ci300493w

10.1021/ci2003889

10.1208/s12248-012-9322-0

10.1039/c0cp00151a

10.1039/c2cs35357a

10.1021/ci500091r

10.1186/1471-2105-15-291

10.1021/ci100264e

10.1021/ci200057e

10.1021/ci500406k

10.3390/molecules200610947

10.1186/s12859-016-1169-4

10.1109/TCBB.2014.2351824

10.1186/s13321-015-0078-2

10.1371/journal.pone.0085678

10.1002/minf.201400132

10.1021/ci400120b

10.1021/ci400450h

10.1021/acs.jcim.7b00049

10.3390/biom8010012

10.1021/ci9000053

Ballester, P. J. Machine Learning Scoring Functions Based on Random Forest and Support Vector Regression. InIAPR International Conference on Pattern Recognition in Bioinformatics, 2012, 14–25.

10.1186/1471-2105-16-S4-S8

10.1021/ci100244v

10.1142/S021972001100577X

10.1371/journal.pcbi.1005690

10.1021/acs.jcim.6b00740

10.1021/acs.jcim.7b00222

10.1002/cnm.2914

10.1002/jcc.24667

10.1021/ci100490w

10.1002/cmdc.201600636

10.1021/acs.jcim.5b00709

10.1016/j.jmb.2007.12.054

10.1021/ci400011c

10.1093/bioinformatics/btv666

10.1038/srep24817

10.1038/srep40053

10.1021/acs.jcim.7b00017

10.1021/acs.jcim.7b00088

10.1016/j.ejmech.2011.05.031

10.1021/ci400303n

10.1038/srep46710

10.1186/s13321-016-0177-8

10.1021/ci500028u

10.1007/s10822-016-9960-x

10.1109/TPAMI.2013.50

10.1021/acs.jcim.6b00355

Johnson M. A., 1990, Concepts and Applications of Molecular Similarity

10.1021/cr950202r

10.1002/qsar.200610151

10.2174/156802610790232260

10.1002/minf.201000061

10.1021/ci034160g

10.1021/acs.jcim.7b00166

10.1021/acs.jcim.6b00753

10.1016/j.ces.2016.02.037

10.1016/j.ejmech.2017.08.056

10.1016/j.compbiolchem.2017.05.007

10.1186/s13321-016-0151-5

10.1021/ci500344v

10.1021/acs.jcim.6b00694

10.1021/acs.jcim.5b00143

10.1016/j.chembiol.2013.01.011

10.1038/aps.2014.35

10.1021/jm0303195

10.1021/ci500574n

10.1371/journal.pone.0178347

10.1111/cbdd.12095

10.1177/1087057105281048

10.1021/ci900309s

10.1021/ci800143n

10.1021/ci300336v

10.1007/s10822-009-9309-9

10.1124/dmd.110.035808

10.1021/tx500389q

10.1021/acs.chemrestox.6b00227

10.1021/ci030340e

10.1007/s10822-012-9561-2

10.1021/jm8015365

10.1021/cb800240j

10.1371/journal.pone.0016968

10.1021/ci034047q

10.1021/mp300237z

10.1016/j.chemolab.2013.09.011

10.1016/j.jmgm.2005.09.002

10.1002/jcc.21641

10.1016/j.chemolab.2014.10.007

10.1021/jm980448z

10.1016/j.bmcl.2016.07.071

10.1021/mp800102c

10.1002/jcc.21292

10.2174/187152012800617722

10.1016/j.ejps.2013.01.011

10.1016/j.bmc.2012.07.020

10.2174/1568026611209061815

10.2174/15680266113139990114

10.1016/j.ejmech.2013.08.035

10.2174/15680266113139990116

10.1021/co400115s

10.1021/acscombsci.7b00039

10.1007/s11030-017-9731-1

10.1021/acscombsci.6b00063

10.1186/s13321-017-0232-0

10.1021/ci500747n

10.1038/nbt1284

Ramsundar B., 2015, arXiv:1502.02072

10.1021/acs.jcim.7b00087

10.1002/minf.201781141

10.1186/s13321-017-0226-y

10.1007/s10822-016-9895-2

10.1109/JPROC.2015.2494218

10.1016/j.cmpb.2014.08.009

10.1021/ci200587h

10.1016/j.bmcl.2015.03.049

10.1021/acs.jcim.5b00175

10.1021/acs.jcim.6b00737

10.1021/ci0601315

10.1177/1087057105281365

10.1021/ci200615h

10.1007/s11030-015-9592-4

10.1039/C5MD00149H

10.1039/C4MB00718B

10.1007/s11030-017-9772-5

10.1039/C5RA23289A

10.1039/C5RA22568J

10.1021/mp300547h

10.1177/1087057116657513

10.1007/s10822-017-0009-6

10.1021/ci400331p

10.1016/j.bmc.2014.12.020

10.1021/acs.jcim.6b00004

10.1016/j.tube.2017.01.005

10.1021/ci500264r

10.1021/acs.jcim.5b00144

10.1021/acs.jcim.5b00555

10.1021/jm990017w

10.1002/cmdc.200800290

10.1021/ci100090p

10.1021/ci4004909

10.1021/ci500588j

Berthold M. R., 2009, Studies in Classification, Data Analysis, and Knowledge Organization

10.1002/qsar.200330825

10.1002/anie.201311162

10.1038/nchem.2095

10.1002/anie.201605707

10.1038/nchem.2479

10.1002/anie.201504241

10.1364/AO.26.004979

10.1002/open.201800156

10.1038/s41598-017-12048-5

10.1039/C7SC02664A

Halls M. D., 2013, Organic Light Emitting Materials and Devices XVII, 882926, 10.1117/12.2025092

10.1016/j.jpowsour.2009.09.024

10.1517/17460441.2014.913565

10.1038/nrd1799

10.1002/minf.201400034

10.1007/BF00124387

10.1021/ci00017a027

10.1021/ci300535x

10.1371/journal.pcbi.1002380

10.4155/fmc.11.8

10.1002/anie.201601941

10.1038/nature11691

10.1007/s10822-016-0008-z

10.1021/acs.jcim.5b00628

10.1016/j.jmgm.2003.10.002

10.1186/1758-2946-1-4

10.1002/minf.200900038

10.1021/acs.jcim.6b00038

10.1002/minf.201400056

10.1021/ci400418c

10.1021/ci700424b

10.1021/ci0503560

10.18632/oncotarget.14073

10.1021/acs.molpharmaceut.7b00346

Jaques, N.; Gu, S.; Bahdanau, D.; Hernández-Lobato, J. M.; Turner, R. E.; Eck, D. Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-Control. InProceedings of the 34th International Conference on Machine Learning, 2017, 1645–1654.

10.1186/s13321-017-0235-x

10.1021/acscentsci.7b00512

Yu, L.; Zhang, W.; Wang, J.; Yu, Y. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. InThirty-First AAAI Conference on Artificial Intelligence, 2017, 2852–2858.

10.1021/acs.molpharmaceut.8b00474

10.1021/acs.jcim.6b00754

10.1038/s42004-018-0068-1

10.1021/ci700286x

10.1186/s13321-019-0341-z

10.1021/acs.jcim.8b00626

10.1186/s13321-018-0286-7

10.1021/acs.jcim.8b00234

Fréchet M., 1957, C. R. Acad. Sci. Paris., 244, 689

10.1039/C8SC00148K

10.1021/cr60274a001

10.1038/nchem.1243

10.1016/S0896-6273(02)00963-7

10.1613/jair.301

Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep Reinforcement Learning that Matters. InThirty-Second AAAI Conference on Artificial Intelligence, 2018.

10.1186/s13321-019-0355-6

10.1126/sciadv.aap7885

Joulin A., 2015, Advances in Neural Information Processing Systems, 190

10.1021/acs.jcim.8b00902

10.1021/acs.jcim.7b00020

10.1002/minf.201700111

10.1021/acs.molpharmaceut.8b00839

10.26434/chemrxiv.7294388.v1

10.1016/j.cell.2017.10.049

10.26434/chemrxiv.5309668.v3

10.1021/acs.jcim.7b00690

10.1038/nature20101

10.1002/med.10041

10.1021/acs.molpharmaceut.7b01137

10.1246/cl.180665

Kusner, M. J.; Paige, B.; Hernández-Lobato, J. M. Grammar Variational Autoencoder. InProceedings of the 34th International Conference on Machine Learning, 2017, 1945–1954.

10.26434/chemrxiv.7097960.v1

10.1021/acscentsci.7b00303

De Cao N., 2018, arXiv:1805.11973

Maziarka Ł., 2019, arXiv:1902.02119

Zhu, J.Y.; Park, T.; Isola, P.; Efros, A. A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. InProceedings of the IEEE International Conference on Computer Vision, 2017; pp 2223–2232.

Jin, W.; Barzilay, R.; Jaakkola, T. Junction Tree Variational Autoencoder for Molecular Graph Generation. InInternational Conference on Machine Learning, 2018; pp 2328–2337.

Simonovsky, M.; Komodakis, N. GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders. InInternational Conference on Artificial Neural Networks, 2018; pp 412–422.

10.1186/s13321-018-0287-6

Liu Q., 2018, Advances in Neural Information Processing Systems, 7806

You J., 2018, Advances in Neural Information Processing Systems, 6410

You J., 2018, International Conference on Machine Learning, 5694

Xu, Z.; Wang, S.; Zhu, F.; Huang, J. Seq2seq Fingerprint: An Unsupervised Deep Molecular Embedding for Drug Discovery. InProceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, 2017; pp 285–294.

10.1080/14686996.2017.1401424

10.1002/anie.201814681

10.1021/acs.jmedchem.5b01849

10.1038/nbt1519

10.1038/462167a

10.1016/j.drudis.2011.12.020

10.1038/nrd4128

Chung T. D., 2015, In Vitro and In Vivo Assessment of ADME and PK Properties During Lead Selection and Lead Optimization–Guidelines, Benchmarks and Rules of Thum

10.1017/S0033583515000190

10.1038/nrd1032

10.2174/156802610790232233

10.2174/138955706776361501

10.1517/17425255.2015.980814

10.1080/17425255.2017.1389897

10.1016/j.ddtec.2004.11.007

10.1016/j.copbio.2007.10.005

10.1038/nrd2445

10.1016/j.chembiol.2014.08.013

10.1038/nrd3701

10.1038/nrd4510

10.1002/cbdv.200900056

10.1021/jm0603015

10.1002/cbdv.200900117

Walther B., 1996, Lipophilicity in Drug Action and Toxicology

10.1517/17460441003605098

10.1517/17460441.2012.714363

10.1021/ie990391u

10.1021/ie3028069

10.1021/acs.iecr.6b02040

10.1021/acs.jctc.6b00449

10.1002/qsar.200810025

10.1007/s11030-009-9108-1

10.1021/ci0504014

10.1007/s11030-006-9036-2

10.1021/jm049509l

10.1021/acs.jcim.6b00625

10.1023/A:1019903710291

10.1021/ci025515j

10.1021/ci010368v

10.1021/ci700257y

10.2478/s11696-007-0010-y

10.1021/ja204781t

10.1038/ncomms7463

10.1021/jm3002857

10.1038/s41598-017-05964-z

10.1021/ci990131n

10.1021/ja993663t

10.1021/acs.jcim.6b00778

10.1021/acs.jcim.5b00106

10.1039/C8MD00370J

10.1016/j.ejps.2007.05.110

10.1021/ci4005805

10.1016/S0960-894X(00)00172-4

10.1517/17460441.1.1.31

10.1016/S1359-6446(04)03365-3

10.1208/aapsj080104

10.1016/S0169-409X(96)00423-1

10.1016/S0169-409X(02)00008-X

Schneider G., 2013, Madame Curie Bioscience Database 2000–2013

10.1039/C5CP00288E

10.2174/138620711795508331

10.1002/1520-6017(200102)90:2<234::AID-JPS14>3.0.CO;2-V

10.1016/S0045-6535(02)00118-2

10.1021/ci034243x

10.1021/ci800406y

10.1021/ci200387c

10.1021/ci00009a013

10.1016/0045-6535(95)00084-L

Timmerman H., 2002, Handbook of Molecular Descriptors

10.1002/cber.19240570326

10.1002/jps.2600750405

Kier L. B., 1976, Molecular Connectivity in Chemistry and Drug Design

Kier L. B., 1986, Molecular Connectivity in Structure-Activity Analysis

10.1021/ci010132r

10.1021/ci100050t

10.1021/ci800024c

10.1021/ci100364a

10.1021/ci034107s

10.1021/ci400187y

10.1021/acs.jcim.6b00601

10.1021/ci900286s

10.1021/ci800058v

10.1021/mp500103r

10.1021/ci800436c

10.1021/mp100279d

10.1021/ci8000277

10.1007/s12031-007-0055-y

10.1021/ci200583t

10.1021/ja0563455

10.1021/ja063076p

10.1039/c2md20203d

10.1023/A:1016140429238

10.1021/acs.molpharmaceut.6b00836

10.3109/03602532.2012.691099

10.1038/nprot.2007.303

10.1016/j.ddtec.2004.11.003

10.1002/0471140856.tx2006s47

10.1021/acs.molpharmaceut.6b01059

10.4155/fmc-2016-0093

10.1016/j.ejps.2004.11.011

10.1002/jps.21068

10.1517/17425255.1.2.325

10.1016/j.bmc.2016.12.049

10.1002/cem.2587

10.1021/ci700307p

10.1002/minf.201000133

10.1186/s13321-018-0263-1

10.1002/minf.201000072

10.1002/1521-3838(200211)21:5<457::AID-QSAR457>3.0.CO;2-5

10.1002/1521-3838(200211)21:5<473::AID-QSAR473>3.0.CO;2-D

10.1016/j.ces.2018.03.005

10.1038/s41598-018-22332-7

10.1021/jm501535r

10.1038/sj.clpt.6100462

Ghosh J., 2016, In Silico Methods for Predicting Drug Toxicity

10.1016/j.bmc.2012.05.047

10.2174/157018006778194736

10.2174/092986706778201558

10.1021/ci100104j

10.2174/138620709788489082

10.1586/ecp.09.2

10.1016/j.ejmech.2010.11.005

10.1016/j.drudis.2017.01.007

10.2174/1570163814666170404160911

10.2174/1389557517666170315150116

10.1039/C6RA28442F

10.1016/j.compbiolchem.2016.01.005

10.1109/TCBB.2016.2535233

10.1021/acs.jcim.5b00642

10.1016/j.addr.2015.03.011

10.2174/1381612821666150302113710

10.1016/S0006-291X(02)02765-1

Kuchinskiene Z., 1982, J. Lipid Res., 23, 762, 10.1016/S0022-2275(20)38110-4

10.1002/jps.21916

Jambhekar S. S., 2003, Foye’s Principles of Medicinal Chemistry

10.1002/jps.24306

10.1016/j.jpba.2008.03.023

10.1021/jm060981b

10.5681/bi.2013.011

10.1016/j.jmgm.2011.11.003

10.1002/cmdc.201700582

10.1080/1062936X.2015.1133700

10.1021/acs.jcim.6b00291

10.1021/jm051245v

10.1093/bioinformatics/btn415

10.1093/nar/gkj067

10.3390/molecules170910429

10.1002/qsar.200960008

10.1016/j.aca.2007.12.033

10.1016/j.jpba.2015.01.046

10.1016/j.bpj.2014.06.024

10.1007/s12539-013-0158-9

10.1016/S0223-5234(01)01269-7

10.1021/cn200100h

10.1016/j.cmpb.2009.03.006

10.1023/B:JCAM.0000017372.32162.37

10.1602/neurorx.2.1.3

10.1016/S0169-409X(02)00005-4

10.1093/bioinformatics/btw713

10.1038/msb.2009.98

10.1016/j.drudis.2013.07.014

10.1021/ci200542m

10.1021/jm040180d

10.1016/j.ejmech.2006.03.003

10.2174/156802606778108915

10.1124/dmd.116.070763

Kwon Y., 2001, Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists

10.1002/wcms.1323

10.1016/j.drudis.2011.10.023

10.1111/j.1747-0285.2009.00899.x

10.1038/nrd4581

10.1124/dmd.108.023507

10.1021/ci2000488

10.1021/ci300009z

10.1093/bioinformatics/bts705

10.1021/ml100016x

10.1002/cmdc.201700097

10.1021/ci400518g

10.1093/bioinformatics/btu761

10.1021/ci400503s

10.1021/acs.jcim.7b00250

10.1093/bioinformatics/btw350

10.1021/ci5005652

10.1093/bioinformatics/btv100

10.1021/acscentsci.5b00131

10.1021/acs.chemrestox.5b00017

10.1021/acscentsci.6b00162

10.1021/acs.chemrestox.6b00385

10.1002/slct.201601051

10.2174/1389200216666151103121352

10.1016/S0006-2952(00)00335-X

10.1093/bioinformatics/btv043

10.1021/jm050529c

10.1021/jm5007098

10.1186/1471-2210-10-8

10.1021/ml200246f

10.1093/bioinformatics/btt325

10.1021/acs.jcim.6b00044

10.1021/ci300155y

10.1124/dmd.114.057893

10.1093/nar/gkx462

10.1021/acs.jmedchem.5b00104

10.1021/ci300367a

10.1080/10629360802083871

10.1021/acs.jcim.7b00244

10.1007/s10822-016-9898-z

10.3390/ijms160511659

10.1002/minf.201500055

Enslein K. A., 1978, J. Environ. Pathol. Toxicol., 2, 115

10.1177/074823378900500210

10.3389/fenvs.2016.00009

10.1080/1062936X.2016.1201142

10.1016/j.reprotox.2017.04.005

10.1016/j.fct.2017.10.021

10.1021/jm040835a

10.1016/j.drudis.2012.07.016

10.1002/minf.200900080

10.1186/s13321-016-0117-7

10.1021/acs.molpharmaceut.7b00317

10.1021/acs.molpharmaceut.7b00631

Tipping M. E., 2000, Advances in Neural Information Processing Systems, 652

10.5120/20639-3318

Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.Xgboost: Extreme Gradient Boosting. R package version 0.4–2, 2015.

10.1038/srep38660

10.1021/acs.jcim.7b00146

10.1021/acs.jcim.5b00238

10.1021/ci500535s

10.1038/nbt1228

10.1016/j.bbapap.2013.05.010

Glicksberg B. S., 2014, Pacific Symposium on Biocomputing 2015, 407, 10.1142/9789814644730_0039

10.1007/s00439-012-1206-y

10.1093/bib/bbr021

10.1038/nrd1468

10.1093/bib/bbr013

10.1038/clpt.2013.1

10.1038/nature08506

10.1093/bib/bbr011

10.1371/journal.pone.0012214

10.1371/journal.pcbi.1000423

10.1038/nbt1017

10.1126/science.1132939

10.1126/scitranslmed.3001318

10.1126/science.1158140

10.1371/journal.pone.0028025

10.1038/nbt.2151

10.1038/clpt.2009.103

10.1371/journal.pone.0004346

10.1371/journal.pcbi.1000662

10.3389/fphar.2017.00298

Byrne R., 2019, Systems Chemical Biology

10.3414/ME11-06-0002

10.1136/amiajnl-2014-002974

10.1038/msb.2011.26

Zhang, P.; Agarwal, P.; Obradovic, Z. Computational Drug Repositioning by Ranking and Integrating Multiple Data Sources. InJoint European Conference on Machine Learning and Knowledge Discovery in Databases; Blockeel, H., Kersting, K., Nijssen, S., Zelezny, F., Eds.; Lecture Notes in Computer Science; Springer, 2013, pp 579–594.

10.1186/1752-0509-4-S2-S6

10.1038/s41467-017-00680-8

10.1186/1758-2946-5-30

10.1371/journal.pone.0111668

10.1093/bioinformatics/btv055

10.1155/2015/275045

10.1093/bioinformatics/btw228

10.1002/cmdc.200600147

10.1073/pnas.1000138107

10.1093/bioinformatics/btu058

10.1126/science.1136800

10.1371/journal.pone.0139446

10.1186/1752-0509-4-S2-S7

Belkin M., 2006, J. Mach. Learn. Res., 7, 2399

10.1039/C5MB00615E

10.1371/journal.pone.0062975

10.1093/bioinformatics/bts670

10.1038/nrd.2017.226

10.1038/nrg2857

10.1038/bjc.2015.341

10.1056/NEJMp1607591

The AACR Project GENIE Consortium, 2017, Cancer Discov, 7, 818, 10.1158/2159-8290.CD-17-0151

10.1093/nar/gky1015

10.1038/s41588-018-0214-9

10.1371/journal.pone.0083672

pharmaphorum.https://pharmaphorum.com/news/novartis-expands-virtual-clinical-trial-project-science-37/ (accessed June 20, 2019).

10.1002/cpt.318

GNS Healthcare. https://www.gnshealthcare.com/gns-healthcare-announces-collaboration-to-power-cancer-drug-development/ (accessed June 20, 2019).

EurekAlert! American Association for the Advancement of Science (AAAS). https://www.eurekalert.org/pub_releases/2017-08/imi-iec081417.php (accessed June 20, 2019).

10.1093/bib/bbv078

Cision PR Newswire. https://www.prnewswire.com/news-releases/berg-enters-into-an-agreement-with-sanofi-pasteur-to-identify-biomarkers-of-flu-vaccine-performance-300545009.html (accessed June 20, 2019).

10.1093/gerona/gly00

10.1093/gerona/glx096

10.1126/science.aaf6756

10.1038/nbt.3670

10.1182/blood-2017-04-779405

10.3389/fimmu.2015.00084

10.1016/j.cbpa.2007.01.684

10.1021/jp070071l

10.1002/anie.200802019

10.1002/qua.25040

10.1002/qua.24954

10.1088/0953-8984/26/18/183001

10.1063/1.4966192

10.1002/qua.24890

10.1002/anie.201703114

10.1103/PhysRevLett.108.253002

10.1038/s41467-017-00839-3

10.1021/acs.jctc.5b01011

10.1063/1.4834075

10.1103/PhysRevA.96.042113

10.1038/s41598-017-09347-2

10.1039/C5SC04786B

10.1021/acs.jpcb.7b08707

10.1063/1.4973380

10.1103/PhysRevLett.114.096405

10.1002/qua.24836

10.1016/j.commatsci.2016.12.004

10.1038/srep19375

10.1038/srep20952

10.1103/PhysRevB.92.014106

10.1038/srep02810

10.1103/PhysRevB.93.115104

10.1002/adfm.201501919

10.1038/nmat4717

10.1021/acs.jpclett.5b01660

10.1021/acs.jctc.5b00099

10.1021/acs.jctc.6b00663

10.1021/jm5006463

10.1021/acs.jcim.6b00491

10.1038/nchem.1669

10.1021/acscentsci.6b00219

10.1039/qr9712500455

10.1351/pac199062101921

10.1021/ci00023a005

Röse P., 1990, Software Development in Chemistry 4

10.1126/science.197.4308.1041

10.1021/ci100216g

10.1002/anie.200502272

10.1002/anie.201506101

10.1038/512020a

10.1002/anie.201202155

10.1002/anie.201202209

10.1039/b104620a

Judson P., 2009, Knowledge-Based Expert Systems in Chemistry: Not Counting on Computers

10.1002/wcms.61

Judson P., 2019, Knowledge-Based Expert Systems in Chemistry: Artificial Intelligence in Decision Making

10.1021/ci400326p

10.1021/acs.jcim.6b00564

10.1021/acscentsci.7b00064

Lowe, D. M.Extraction of Chemical Structures and Reactions from the Literature. Doctoral Dissertation, University of Cambridge, 2012.

Lowe, D.Chemical reactions from US patents(1976-Sep2016), https://figshare.com/articles/Chemical_reactions_from_US_%20patents_1976-Sep2016_/5104873 (accessed June 20, 2019).

10.1002/chem.201604556

10.1021/acs.accounts.8b00087

10.1002/chem.201605499

10.1038/nature25978

10.1007/978-3-540-75538-8_7

10.1109/TCIAIG.2012.2186810

10.1613/jair.1.11222

Niepert, M.; Ahmed, M.; Kutzkov, K. Learning Convolutional Neural Networks for Graphs. InInternational Conference on Machine Learning, 2016, 2014–2023.

Jain, A.; Zamir, A. R.; Savarese, S.; Saxena, A. Structural-RNN: Deep Learning on Spatio-Temporal Graphs. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 5308–5317.

10.1002/minf.201501019

10.1186/s13321-017-0230-2