Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mccarthy J., 1969, Machine Intelligence
Barr A., 1982, Handbook of Artificial Intelligence
Popovic D., 1994, Methods and Tools for Applied Artificial Intelligence
Bobrow D. G., 1968, Semantic Information Processing
Rumelhart D., 1986, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 10.7551/mitpress/5236.001.0001
Pearl, J. Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning. InProceedings of the 7th Conference of the Cognitive Science Society, 1985, 329–334.
Cortes C., 1995, Mach. Learn., 20, 273
Batsford, T. Calculating Optimal Jungling Routes in DOTA2 using neural networks and genetic algorithms.Game Behaviour2014, 1, https://computing.derby.ac.uk/ojs/index.php/gb/article/view/14 (accessed June 20, 2019).
Paull K. D., 1992, Cancer Res., 52, 3892
Ho, T. K. Random Decision Forests. InProceedings of 3rd International Conference on Document Analysis and Recognition, 1995, 278–282.
Dahl G. E., 2014, arXiv:1406.1231
Goodfellow I., 2016, Deep Learning
Murphy K. P., 2012, Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine Learning
Bishop C. M., 2006, Pattern Recognition and Machine Learning
Lewis, D. D. Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval. InEuropean Conference on Machine Learning, 1998, 4–15.
Joachims, T. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. InEuropean Conference on Machine Learning, 1998, 137–142.
Chapelle O., 2006, Semi-Supervised Learning, Ser. Adaptive Computation and Machine Learning
Yarowsky D., 1995, 33rd Annual Meeting of the Association for Computational Linguistics, 189, 10.3115/981658.981684
Blum, A.; Mitchell, T. Combining Labeled and Unlabeled Data with Co-Training. InProceedings of the Eleventh Annual Conference on Computational Learning Theory, 1998, 92–100.
Joachims, T. Transductive Inference for Text Classification Using Support Vector Machines. InProceedings of the Sixteenth International Conference on Machine Learning, 1999, 200–209.
Zhou D., 2004, Advances in Neural Information Processing Systems 6, 321
Lewis, D. D.; Gale, W. A. A Sequential Algorithm for Training Text Classifiers. InProceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1994, 3–12.
Atlas L. E., 1990, Advances in Neural Information Processing Systems 2, 566
Hoi, S. C.; Jin, R.; Lyu, M. R. Large-Scale Text Categorization by Batch Mode Active Learning. InProceedings of the 15th International Conference on World Wide Web, 2006, 633–642.
Settles, B.Active Learning Literature Survey; Computer Sciences Technical Report 1648; 1994; Vol. 15, pp 1–67.
Campbell, C.; Cristianini, N.; Smola, A. Query Learning with Large Margin Classifiers. InProceedings of the Seventeenth International Conference on Machine Learning, 2000, 111–118.
Tong S., 2001, J. Mach. Learn. Res., 2, 45
Sutton R. S., 1998, Reinforcement Learning: An Introduction
Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow: Combining Improvements in Deep Reinforcement Learning. InThirty-Second AAAI Conference on Artificial Intelligence, 2017.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep Reinforcement Learning. InInternational Conference on Machine Learning, 2016, 1928–1937.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust Region Policy Optimization. InInternational Conference on Machine Learning, 2015, 1889–1897.
Torrey L., 2010, Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques
Bickel, S.; Brückner, M.; Scheffer, T. Discriminative Learning for Differing Training and Test Distributions. InProceedings of the 24th International Conference on Machine Learning, 2007, 81–88.
Quattoni, A.; Collins, M.; Darrell, T. Transfer Learning for Image Classification with Sparse Prototype Representations. In2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, 1–8.
Wang, C.; Mahadevan, S. Manifold Alignment Using Procrustes Analysis. InProceedings of the 25th International Conference on Machine Learning, 2008, 1120–1127.
Bonilla E. V., 2008, Advances in Neural Information Processing Systems, 153
Stark, M.; Goesele, M.; Schiele, B. A Shape-Based Object Class Model for Knowledge Transfer. In2009 IEEE 12th International Conference on Computer Vision, 2009, 373–380.
Wang, D.; Li, Y.; Lin, Y.; Zhuang, Y. Relational Knowledge Transfer for Zero-Shot Learning. InThirtieth AAAI Conference on Artificial Intelligence, 2016, 2145–2151.
Yao, Y.; Doretto, G. Boosting for Transfer Learning with Multiple Sources. In2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, 1855–1862.
Kovac, K.Multitask Learning for Bayesian Neural Networks. Master’s Thesis, University of Toronto, 2005.
Sahami, M. Learning Limited Dependence Bayesian Classifiers. InProceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996, 335–338.
Langley, P.; Iba, W.; Thompson, K. An Analysis of Bayesian Classifiers. InProceedings of the Tenth National Conference on Artificial Intelligence, 1992, 223–228.
Zhang, H.; Ling, C. X. Learnability of Augmented Naive Bayes in Nominal Domains. InProceedings of the 18th International Conference on Machine Learning, 2001, 617–623.
Rish I., 2001, IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, 41
Kononenko I., 1991, European Working Session on Learning, 206
Jensen F. V., 1996, An Introduction to Bayesian Networks
Heckerman D., 1998, Learning in Graphical Models
Margaritis D., 2000, Advances in Neural Information Processing Systems, 505
Tang, L.; Pan, H.; Yao, Y. K-Nearest Neighbor Regression with Principal Component Analysis for Financial Time Series Prediction. InProceedings of the 2018 International Conference on Computing and Artificial Intelligence, 2018, 127–131.
Chaudhuri K., 2014, Advances in Neural Information Processing Systems, 3437
Berchtold, S.; Böhm, C.; Keim, D. A.; Kriegel, H.P. A Cost Model for Nearest Neighbor Search in High-Dimensional Data Space. Inthe sixteenth ACM SIGACT-SIGMOD-SIGART Symposium, 1997, 78–86.
Arya, S.; Mount, D. M.; Narayan, O. Accounting for Boundary Effects in Nearest Neighbor Searching. InProceedings of the Eleventh Annual Symposium on Computational Geometry, 1995, 336–344.
Thilagaraj M., 2018, Intelligent Engineering Informatics
Qiu, B.Z.; Yue, F.; Shen, J.Y. BRIM: An Efficient Boundary Points Detecting Algorithm. InPacific-Asia Conference on Knowledge Discovery and Data Mining, 2007, 761–768.
MOODY J., 1988, Proceedings of Connectionist Models Summer School
Powel, M. J. D. Radial Basis Functions Approximations to Polynomials. InProceedings of 12th Biennial Numerical Analysis Conference, 1988, 223–241.
Powell, M. Radial Basis Functions for Multivariable Interpolation: A Review. InIMA Conference on Algorithms for the Approximation of Functions and Data, 1987, 143–167.
Wettschereck D., 1992, Advances in Neural Information Processing Systems, 1133
Schwenker, F.; Kestler, H.; Palm, G.; Hoher, M. Similarities of LVQ and RBF Learning-A Survey of Learning Rules and the Application to the Classification of Signals from High-Resolution Electrocardiography. InProceedings of IEEE International Conference on Systems, Man and Cybernetics, 1994, 646–651.
Schwenker F., 2000, Neural Netw. World., 10, 473
Miikkulainen R., 1992, Connectionist Natural Language Processing
Weston J., 2001, Advances in Neural Information Processing Systems, 668
Fenn, M.; Guarracino, M.; Pi, J.; Pardalos, P. M. Raman Spectroscopy Using a Multiclass Extension of Fisher-Based Feature Selection Support Vector Machines (FFS-SVM) for Characterizing In-Vitro Apoptotic Cell Death Induced by Paclitaxel. InInternational Conference on Learning and Intelligent Optimization, 2014, 306–323.
Lauer F., 2011, J. Mach. Learn. Res., 12, 2293
Quinlan J. R., 1979, Expert Systems in the Micro Electronics Age
Quinlan J., 1983, Machine Learning: An Artificial Intelligence Approach
Quinlan J., 1993, C4.5: Programs for Machine Learning
Breiman L., 1984, Classification and Regression Trees
Bradford, J. P.; Kunz, C.; Kohavi, R.; Brunk, C.; Brodley, C. E. Pruning Decision Trees with Misclassification Costs. InEuropean Conference on Machine Learning, 1998, 131–136.
Kotsiantis S. B., 2007, Emerging Artificial Intelligence Applications in Computer Engineering
Caruana, R.; Niculescu-Mizil, A. An Empirical Comparison of Supervised Learning Algorithms. InProceedings of the 23rd International Conference on Machine Learning, 2006, 161–168.
Schapire R. E., 2003, Nonlinear Estimation and Classification
Koren, Yehuda.Bellkor Solution to the Netflix Grand Prize. https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf (accessed June 20, 2019).
Jolie I., 1986, Principal Component Analysis
Fukunaga K., 1990, Introduction to Statistical Pattern Classification
Li H., 2004, Advances in Neural Information Processing Systems, 97
Maaten L. v. d., 2008, J. Mach. Learn. Res., 9, 2579
Rao C. R., 1964, Sankhya: Ind. J. Stat. A, 26, 329
Bocchieri, E.; Wilpon, J. Discriminative Analysis for Feature Reduction in Automatic Speech Recognition. InProceedings of the 1992 IEEE International Conference on Acoustics, Speech and Signal Processing, 1992, 501–504.
Sun, D. X. Feature Dimension Reduction Using Reduced-Rank Maximum Likelihood Estimation for Hidden Markov Models. InProceeding of Fourth International Conference on Spoken Language Processing. ICSLP’96, 1996, 244–247.
Van Der Maaten L., 2014, J. Mach. Learn. Res., 15, 3221
Burges C., 2005, Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers
Saul L. K., 2006, Semisupervised Learning
Venna, J.Dimensionality Reduction for Visual Exploration of Similarity Structures. Doctoral Dissertation, Helsinki University of Technology, 2007.
Van Der Maaten L., 2009, J. Mach. Learn. Res., 10, 66
Wasserman P. D., 1989, Neural Computing: Theory and Practice
Hertz J., 1991, Introduction to the Theory of Neural Computation
Smith, M. Neural Networks for Statistical Modeling. InProceedings Of The 19th Annual SAS Users Group International Conference, 1994, 1538–1550.
Kingma D. P., 2015, arXiv:1412.6980
Werbos P. J., 1994, The Roots of Backpropagation: from Ordered Derivatives to Neural Networks and Political Forecasting
Goodfellow, I. J.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout Networks. InInternational Conference on Machine Learning, 2013, 1319–1327.
Srivastava N., 2014, J. Mach. Learn. Res., 15, 1929
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 770–778.
Hochreiter S., 2001, A Field Guide to Dynamical Recurrent Neural Networks
Chung J., 2014, NIPS 2014 Workshop on Deep Learning
Grefenstette, E.; Hermann, K. M.; Suleyman, M.; Blunsom, P. Learning to Transduce with Unbounded Memory. InNIPS’15 Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015, 1828–1836.
Hinton, G. E.; Sejnowski, T. J. Optimal Perceptual Inference. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1983, 448–453.
Smolensky P., 1986, Parallel Distributed Processing: Explorations in the Microstructure of Cognition
Salakhutdinov R., 2009, J. Mach. Learn. Res., 24, 448
Welling M., 2005, Artificial Intelligence and Statistics
Vincent P., 2010, J. Mach. Learn. Res., 11, 3371
Kingma D. P., 2013, arXiv:1312.6114
Zhang, B.; Xiong, D.; Su, J.; Duan, H.; Zhang, M. Variational Neural Machine Translation. InProceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, 521–530.
Makhzani A., 2015, arXiv:1511.05644
LeCun Y., 1995, The Handbook of Brain Theory and Neural Networks
LeCun Y., 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 253, 10.1109/ISCAS.2010.5537907
Srivastava R. K., 2015, Advances in Neural Information Processing Systems, 2377
Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; Weinberger, K. Q. Deep Networks with Stochastic Depth. InEuropean Conference on Computer Vision, 2016, 646–661.
Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K. Q. Densely Connected Convolutional Networks. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 4700–4708.
Bergstra J., 2012, J. Mach. Learn. Res., 13, 281
Snoek J., 2012, Advances in Neural Information Processing Systems, 2951
Snoek, J.; Rippel, O.; Swersky, K.; Kiros, R.; Satish, N.; Sundaram, N.; Patwary, M.; Prabhat, M.; Adams, R. Scalable Bayesian Optimization Using Deep Neural Networks. InInternational Conference on Machine Learning, 2015, 2171–2180.
Suganuma, M.; Shirakawa, S.; Nagao, T. A Genetic Programming Approach to Designing Convolutional Neural Network Architectures. InProceedings of the Genetic and Evolutionary Computation Conference, 2017, 497–504.
Sabour S., 2017, Advances in Neural Information Processing Systems, 3856
Goodfellow I. J., 2014, Advances in Neural Information Processing Systems, 2672
Salimans T., 2016, Advances in Neural Information Processing Systems, 2234
Arjovsky M., 2017, arXiv:1701.07875
Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A. P.; Tejani, A.; Totz, J.; Wang, Z. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. InProceedings of the IEEE conference on computer vision and pattern recognition, 2017, 4681–4690.
Bahdanau D., 2014, arXiv:1409.0473
Graves A., 2013, arXiv:1308.0850
Luong, M.T.; Pham, H.; Manning, C. D. Effective Approaches to Attention-Based Neural Machine Translation. InProceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, 1412–1421.
Todeschini R., 2008, Handbook of Molecular Descriptors
Todeschini R., 2009, Molecular Descriptors for Chemoinformatics: Vol. I: Alphabetical Listing/Vol. II: Appendices, References, 10.1002/9783527628766
Unterthiner T., 2014, Proceedings of the Deep Learning Workshop at NIPS, 1
Duvenaud D. K., 2015, Advances in Neural Information Processing Systems, 2224
Provost F., 2000, Proceedings of the AAAI’2000 Workshop on Imbalanced Data Sets, 1
Maciejewski T., 2011, 2011 IEEE Symposium on Computational Intelligence and Data Mining, 104
Reed S., 2014, arXiv:1412.6596
Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; Wang, X. Learning from Massive Noisy Labeled Data for Image Classification. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 2691–2699.
Ballester, P. J. Machine Learning Scoring Functions Based on Random Forest and Support Vector Regression. InIAPR International Conference on Pattern Recognition in Bioinformatics, 2012, 14–25.
Johnson M. A., 1990, Concepts and Applications of Molecular Similarity
Ramsundar B., 2015, arXiv:1502.02072
Berthold M. R., 2009, Studies in Classification, Data Analysis, and Knowledge Organization
Jaques, N.; Gu, S.; Bahdanau, D.; Hernández-Lobato, J. M.; Turner, R. E.; Eck, D. Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-Control. InProceedings of the 34th International Conference on Machine Learning, 2017, 1645–1654.
Yu, L.; Zhang, W.; Wang, J.; Yu, Y. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. InThirty-First AAAI Conference on Artificial Intelligence, 2017, 2852–2858.
Fréchet M., 1957, C. R. Acad. Sci. Paris., 244, 689
Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep Reinforcement Learning that Matters. InThirty-Second AAAI Conference on Artificial Intelligence, 2018.
Joulin A., 2015, Advances in Neural Information Processing Systems, 190
Kusner, M. J.; Paige, B.; Hernández-Lobato, J. M. Grammar Variational Autoencoder. InProceedings of the 34th International Conference on Machine Learning, 2017, 1945–1954.
De Cao N., 2018, arXiv:1805.11973
Maziarka Ł., 2019, arXiv:1902.02119
Zhu, J.Y.; Park, T.; Isola, P.; Efros, A. A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. InProceedings of the IEEE International Conference on Computer Vision, 2017; pp 2223–2232.
Jin, W.; Barzilay, R.; Jaakkola, T. Junction Tree Variational Autoencoder for Molecular Graph Generation. InInternational Conference on Machine Learning, 2018; pp 2328–2337.
Simonovsky, M.; Komodakis, N. GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders. InInternational Conference on Artificial Neural Networks, 2018; pp 412–422.
Liu Q., 2018, Advances in Neural Information Processing Systems, 7806
You J., 2018, Advances in Neural Information Processing Systems, 6410
You J., 2018, International Conference on Machine Learning, 5694
Xu, Z.; Wang, S.; Zhu, F.; Huang, J. Seq2seq Fingerprint: An Unsupervised Deep Molecular Embedding for Drug Discovery. InProceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, 2017; pp 285–294.
Chung T. D., 2015, In Vitro and In Vivo Assessment of ADME and PK Properties During Lead Selection and Lead Optimization–Guidelines, Benchmarks and Rules of Thum
Walther B., 1996, Lipophilicity in Drug Action and Toxicology
Schneider G., 2013, Madame Curie Bioscience Database 2000–2013
Timmerman H., 2002, Handbook of Molecular Descriptors
Kier L. B., 1976, Molecular Connectivity in Chemistry and Drug Design
Kier L. B., 1986, Molecular Connectivity in Structure-Activity Analysis
Ghosh J., 2016, In Silico Methods for Predicting Drug Toxicity
Jambhekar S. S., 2003, Foye’s Principles of Medicinal Chemistry
Kwon Y., 2001, Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists
Enslein K. A., 1978, J. Environ. Pathol. Toxicol., 2, 115
Tipping M. E., 2000, Advances in Neural Information Processing Systems, 652
Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.Xgboost: Extreme Gradient Boosting. R package version 0.4–2, 2015.
Byrne R., 2019, Systems Chemical Biology
Zhang, P.; Agarwal, P.; Obradovic, Z. Computational Drug Repositioning by Ranking and Integrating Multiple Data Sources. InJoint European Conference on Machine Learning and Knowledge Discovery in Databases; Blockeel, H., Kersting, K., Nijssen, S., Zelezny, F., Eds.; Lecture Notes in Computer Science; Springer, 2013, pp 579–594.
Belkin M., 2006, J. Mach. Learn. Res., 7, 2399
pharmaphorum.https://pharmaphorum.com/news/novartis-expands-virtual-clinical-trial-project-science-37/ (accessed June 20, 2019).
GNS Healthcare. https://www.gnshealthcare.com/gns-healthcare-announces-collaboration-to-power-cancer-drug-development/ (accessed June 20, 2019).
EurekAlert! American Association for the Advancement of Science (AAAS). https://www.eurekalert.org/pub_releases/2017-08/imi-iec081417.php (accessed June 20, 2019).
Cision PR Newswire. https://www.prnewswire.com/news-releases/berg-enters-into-an-agreement-with-sanofi-pasteur-to-identify-biomarkers-of-flu-vaccine-performance-300545009.html (accessed June 20, 2019).
Röse P., 1990, Software Development in Chemistry 4
Judson P., 2009, Knowledge-Based Expert Systems in Chemistry: Not Counting on Computers
Judson P., 2019, Knowledge-Based Expert Systems in Chemistry: Artificial Intelligence in Decision Making
Lowe, D. M.Extraction of Chemical Structures and Reactions from the Literature. Doctoral Dissertation, University of Cambridge, 2012.
Lowe, D.Chemical reactions from US patents(1976-Sep2016), https://figshare.com/articles/Chemical_reactions_from_US_%20patents_1976-Sep2016_/5104873 (accessed June 20, 2019).
Niepert, M.; Ahmed, M.; Kutzkov, K. Learning Convolutional Neural Networks for Graphs. InInternational Conference on Machine Learning, 2016, 2014–2023.
Jain, A.; Zamir, A. R.; Savarese, S.; Saxena, A. Structural-RNN: Deep Learning on Spatio-Temporal Graphs. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 5308–5317.