Concepts and use cases for picosecond ultrasonics with x-rays

Photoacoustics - Tập 31 - Trang 100503 - 2023
Maximilian Mattern1, Alexander von Reppert1, Steffen Peer Zeuschner1,2, Marc Herzog1, Jan-Etienne Pudell1,2,3, Matias Bargheer1,2
1Institut für Physik & Astronomie, Universität Potsdam, 14476 Potsdam, Germany
2Helmholtz Zentrum Berlin, 12489 Berlin, Germany
3European XFEL, 22869, Schenefeld, Germany

Tài liệu tham khảo

Grahn, 1989, Picosecond ultrasonics, IEEE J. Quantum Electron., 25, 2562, 10.1109/3.40643 Maris, 1998, Picosecond ultrasonics, Sci. Am., 278, 86, 10.1038/scientificamerican0198-86 Tas, 1994, Electron diffusion in metals studied by picosecond ultrasonics, Phys. Rev. B, 49, 15046, 10.1103/PhysRevB.49.15046 Tas, 1998, Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation, Appl. Phys. Lett., 72, 2235, 10.1063/1.121276 Antonelli, 2006, Characterization of mechanical and thermal properties using ultrafast optical metrology, MRS Bull., 31, 607, 10.1557/mrs2006.157 Matsuda, 2015, Fundamentals of picosecond laser ultrasonics, Ultrasonics, 56, 3, 10.1016/j.ultras.2014.06.005 Thomsen, 1986, Surface generation and detection of phonons by picosecond light pulses, Phys. Rev. B, 34, 4129, 10.1103/PhysRevB.34.4129 Ruello, 2015, Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action, Ultrasonics, 56, 21, 10.1016/j.ultras.2014.06.004 Wright, 1991, Ultrafast vibration and laser acoustics in thin transparent films, Opt. Lett., 16, 1529, 10.1364/OL.16.001529 Lejman, 2014, Ultrafast optical detection of coherent acoustic phonons emission driven by superdiffusive hot electrons, J. Opt. Soc. Am. B, 31, 282, 10.1364/JOSAB.31.000282 Gusev, 2014, Detection of nonlinear picosecond acoustic pulses by time-resolved brillouin scattering, J. Appl. Phys., 116, 10.1063/1.4893183 Bojahr, 2013, Brillouin scattering of visible and hard x-ray photons from optically synthesized phonon wavepackets, Opt. Express, 21, 21188, 10.1364/OE.21.021188 Gusev, 2018, Advances in applications of time-domain brillouin scattering for nanoscale imaging, Appl. Phys. Rev., 5, 10.1063/1.5017241 Wright, 1995, Laser picosecond acoustics in double-layer transparent films, Opt. Lett., 20, 632, 10.1364/OL.20.000632 Pezeril, 2016, Laser generation and detection of ultrafast shear acoustic waves in solids and liquids, Opt. Laser Technol., 83, 177, 10.1016/j.optlastec.2016.03.019 van Capel, 2010, Time-resolved interferometric detection of ultrashort strain solitons in sapphire, Phys. Rev. B, 81, 422, 10.1103/PhysRevB.81.144106 Daly, 2004, Imaging nanostructures with coherent phonon pulses, Appl. Phys. Lett., 84, 5180, 10.1063/1.1764599 Pérez-Cota, 2020, Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells, J. Appl. Phys., 128, 10.1063/5.0023744 Bargheer, 2006, Recent progress in ultrafast x-ray diffraction, Chemphyschem : Eur. J. Chem. Phys Phys. Chem., 7, 783, 10.1002/cphc.200500591 Lindenberg, 2017, Visualization of atomic-scale motions in materials via femtosecond X-Ray scattering techniques, Ann. Rev. Mater. Res., 47, 425, 10.1146/annurev-matsci-070616-124152 Trigo, 2021 Lindenberg, 2000, Time-resolved X-Ray diffraction from coherent phonons during a laser-induced phase transition, Phys. Rev. Lett., 84, 111, 10.1103/PhysRevLett.84.111 Larsson, 2002, Picosecond x-ray diffraction studies of laser-excited acoustic phonons in insb, Appl. Phys. A, 75, 467, 10.1007/s003390201421 Hayashi, 2006, Acoustic pulse echoes probed with time-resolved x-ray triple-crystal diffractometry, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.115505 Henighan, 2016, Generation mechanism of terahertz coherent acoustic phonons in fe, Phys. Rev. B, 93, 10.1103/PhysRevB.93.220301 Dornes, 2019, The ultrafast Einstein–de Haas effect, Nature, 565, 209, 10.1038/s41586-018-0822-7 Shayduk, 2022, Femtosecond X-ray diffraction study of multi-THz coherent phonons in SrTiO 3, Appl. Phys. Lett., 120, 10.1063/5.0083256 Trigo, 2010, Imaging nonequilibrium atomic vibrations with x-ray diffuse scattering, Phys. Rev. B Mater. Phys., 82, 235205, 10.1103/PhysRevB.82.235205 Trigo, 2013, Fourier-transform inelastic x-ray scattering from time- and momentum-dependent phonon–phonon correlations, Nat. Phys., 9, 790, 10.1038/nphys2788 Zhu, 2015, Phonon spectroscopy with sub-mev resolution by femtosecond X-ray diffuse scattering, Phys. Rev. B, 92, 10.1103/PhysRevB.92.054303 Wall, 2018, Ultrafast disordering of vanadium dimers in photoexcited VO2, Science (New York, N.Y.), 362, 572, 10.1126/science.aau3873 Rose-Petruck, 1999, Picosecond–milliångström lattice dynamics measured by ultrafast x-ray diffraction, Nature, 398, 310, 10.1038/18631 Bargheer, 2004, Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction, Science (New York, N.Y.), 306, 1771, 10.1126/science.1104739 Nicoul, 2011, Picosecond acoustic response of a laser-heated gold-film studied with time-resolved X-ray diffraction, Appl. Phys. Lett., 98, 10.1063/1.3584864 Quirin, 2012, Struct. dyn. in FeRh during a laser-induced metamagnetic phase transition, Phys. Rev. B, 85, 498, 10.1103/PhysRevB.85.020103 Zeuschner, 2019, Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction, Struct. Dyn. (Melville, N.Y.), 6 Bostedt, 2016, Linac coherent light source: The first five years, Rev. Mod. Phys., 88, 207, 10.1103/RevModPhys.88.015007 Abela, 2017, Perspective: Opportunities for ultrafast science at swissfel, Struct. Dyn. (Melville, N.Y.), 4 Schoenlein, 2019, Recent advances in ultrafast x-ray sources, Phil. Trans. R. Soc. A, 377, 10.1098/rsta.2018.0384 Schoenlein, 2000, Generation of femtosecond pulses of synchrotron radiation, Science (New York, N.Y.), 287, 2237, 10.1126/science.287.5461.2237 Beaud, 2007, Spatiotemporal stability of a femtosecond hard-X-ray undulator source studied by control of coherent optical phonons, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.174801 Enquist, 2010, Subpicosecond hard X-ray streak camera using single-photon counting, Opt. Lett., 35, 3219, 10.1364/OL.35.003219 Jankowiak, 2013, Low-α operation of BESSY II and future plans for an alternating bunch length scheme BESSY VSR, Synchrotron Radiat. News, 26, 22, 10.1080/08940886.2013.791212 Rössle, 2021, The time-resolved hard x-ray diffraction endstation KMC-3 XPP at BESSY II, J. Synchrotron Radiat., 28, 10.1107/S1600577521002484 Gaal, 2014, Ultrafast switching of hard x-rays, J. Synchrotron Radiat., 21, 380, 10.1107/S1600577513031949 Sander, 2019, Demonstration of a picosecond bragg switch for hard x-rays in a synchrotron-based pump-probe experiment, J. Synchrotron Radiat., 26, 1253, 10.1107/S1600577519005356 Grossmann, 2017, Characterization of thin-film adhesion and phonon lifetimes in Al/Si membranes by picosecond ultrasonics, New J. Phys., 19, 10.1088/1367-2630/aa6d05 Thomsen, 1986, Picosecond interferometric technique for study of phonons in the brillouin frequency range, Opt. Commun., 60, 55, 10.1016/0030-4018(86)90116-1 Lin, 1991, Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry, J. Appl. Phys., 69, 3816, 10.1063/1.348958 Bergeard, 2016, Hot-electron-induced ultrafast demagnetization in Co/Pt multilayers, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.147203 Ferté, 2017, Ultrafast hot-electron induced quenching of tb 4f magnetic order, Phys. Rev. B, 96, 10.1103/PhysRevB.96.144427 Xu, 2017, Ultrafast magnetization manipulation using single femtosecond light and hot-electron pulses, Adv. Mater., 29, 10.1002/adma.201703474 Bergeard, 2020, Tailoring femtosecond hot-electron pulses for ultrafast spin manipulation, Appl. Phys. Lett., 117, 10.1063/5.0018502 Schick, 2013, Ultrafast reciprocal-space mapping with a convergent beam, J. Appl. Crystallogr., 46, 1372, 10.1107/S0021889813020013 Zeuschner, 2021, Reciprocal space slicing: A time-efficient approach to femtosecond x-ray diffraction, Struct. Dyn. (Melville, N.Y.), 8 Pudell, 2020, Heat transport without heating?—An ultrafast X–ray perspective into a metal heterostructure, Adv. Funct. Mater., 30 Royer, 2000 Nie, 2006, Measurement of the electronic Grüneisen constant using femtosecond electron diffraction, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.025901 Maldonado, 2017, Theory of out-of-equilibrium ultrafast relaxation dynamics in metals, Phys. Rev. B, 96, 173, 10.1103/PhysRevB.96.174439 Reddy, 2005, Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion, Appl. Phys. Lett., 87, 10.1063/1.2133890 Oommen, 2022, Role of vibrational properties and electron-phonon coupling on thermal transport across metal-dielectric interfaces with ultrathin metallic interlayers, J. Phys.: Condens. Matter. Inst. Phys. J. Herzog, 2022, Phonon–dominated energy transport in purely metallic heterostructures, Adv. Funct. Mater., 10.1002/adfm.202206179 Yeh, 2005 Le Guyader, 2013, Dynamics of laser-induced spin reorientation in Co/SmFeO3 heterostructure, Phys. Rev. B, 87, 935, 10.1103/PhysRevB.87.054437 Wang, 2008, Electronic Grüneisen parameter and thermal expansion in ferromagnetic transition metal, Appl. Phys. Lett., 92, 10.1063/1.2902170 Schick, 2014, Ultrafast lattice response of photoexcited thin films studied by x-ray diffraction, Struct. Dyn. (Melville, N.Y.), 1 Korff Schmising, 2008, Ultrafast magnetostriction and phonon-mediated stress in a photoexcited ferromagnet, Phys. Rev. B, 78, 10.1103/PhysRevB.78.060404 Brorson, 1987, Femtosecond electronic heat-transport dynamics in thin gold films, Phys. Rev. Lett., 59, 1962, 10.1103/PhysRevLett.59.1962 Hohlfeld, 1997, Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness, Appl. Phys. B, 64, 387, 10.1007/s003400050189 Battiato, 2012, Theory of laser-induced ultrafast superdiffusive spin transport in layered heterostructures, Phys. Rev. B, 86, 10.1103/PhysRevB.86.024404 Malinowski, 2018, Hot-electron transport and ultrafast magnetization dynamics in magnetic multilayers and nanostructures following femtosecond laser pulse excitation, Zeitschrift Fr Physik B Condensed Matter and Quanta, 91, 3251 Hohlfeld, 2000, Electron and lattice dynamics following optical excitation of metals, Chem. Phys., 251, 237, 10.1016/S0301-0104(99)00330-4 Nenno, 2018, Particle-in-cell simulation of ultrafast hot-carrier transport in Fe/Au heterostructures, Phys. Rev. B, 98, 10.1103/PhysRevB.98.224416 Wais, 2021, Numerical solver for the time-dependent far-from-equilibrium Boltzmann equation, Comput. Phys. Commun., 264, 10.1016/j.cpc.2021.107877 Chen, 2001, Ballistic-diffusive heat-conduction equations, Phys. Rev. Lett., 86, 2297, 10.1103/PhysRevLett.86.2297 Wang, 2010, Temperature dependence of electron-phonon thermalization and its correlation to ultrafast magnetism, Phys. Rev. B, 81, 10.1103/PhysRevB.81.220301 Zahn, 2021, Lattice dynamics and ultrafast energy flow between electrons, spins, and phonons in a 3d ferromagnet, Phys. Rev. Res., 3, 10.1103/PhysRevResearch.3.023032 Zahn, 2022, Intrinsic energy flow in laser-excited 3d ferromagnets, Phys. Rev. Res., 4, 10.1103/PhysRevResearch.4.013104 Koopmans, 2010, Explaining the paradoxical diversity of ultrafast laser-induced demagnetization, Nat. Mater., 9, 259, 10.1038/nmat2593 Battiato, 2010, Superdiffusive spin transport as a mechanism of ultrafast demagnetization, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.027203 Roth, 2012, Temperature dependence of laser-induced demagnetization in Ni: A key for identifying the underlying mechanism, Phys. Rev. X, 2 Frietsch, 2015, Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal, Nat. Commun., 6, 8262, 10.1038/ncomms9262 Shokeen, 2017, Spin flips versus spin transport in nonthermal electrons excited by ultrashort optical pulses in transition metals, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.107203 Siegrist, 2019, Light-wave dynamic control of magnetism, Nature, 571, 240, 10.1038/s41586-019-1333-x Frietsch, 2020, The role of ultrafast magnon generation in the magnetization dynamics of rare-earth metals, Sci. Adv., 6, 10.1126/sciadv.abb1601 Pudell, 2019, Ultrafast negative thermal expansion driven by spin disorder, Phys. Rev. B, 99, 10.1103/PhysRevB.99.094304 von Reppert, 2020, Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer, Struct. Dyn. (Melville, N.Y.), 7 Barron, 1980, Thermal expansion of solids at low temperatures, Adv. Phy., 29, 609, 10.1080/00018738000101426 White, 1993, Solids: Thermal expansion and contraction, Contemp. Phys., 34, 193, 10.1080/00107519308213818 von Reppert, 2016, Watching the vibration and cooling of ultrathin gold nanotriangles by ultrafast x-ray diffraction, J. Phys. Chem. C, 120, 28894, 10.1021/acs.jpcc.6b11651 White, 1962, Thermal expansion at low temperatures— V. Dilute alloys of manganese in copper, J. Phys. Chem. Solids, 23, 169, 10.1016/0022-3697(62)90077-X Pytte, 1965, Spin-phonon interactions in a heisenberg ferromagnet, Ann. Phys., 32, 377, 10.1016/0003-4916(65)90139-9 Argyle, 1967, Magnetoelastic behavior of single-crystal europium oxide. I. Thermal expansion anomaly, Phys. Rev., 160, 413, 10.1103/PhysRev.160.413 Reid, 2018, Beyond a phenomenological description of magnetostriction, Nat. Commun., 9, 388, 10.1038/s41467-017-02730-7 von Reppert, 2020, Spin stress contribution to the lattice dynamics of fept, Sci. Adv., 6, 10.1126/sciadv.aba1142 Mattern, 2021, Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO 3, Struct. Dyn. (Melville, N.Y.), 8 Ashcroft, 2012 Nix, 1941, The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron, Phys. Rev., 60, 597, 10.1103/PhysRev.60.597 Nicklow, 1971, Lattice dynamics of holmium, Phys. Rev. B, 3, 1229, 10.1103/PhysRevB.3.1229 Barrera, 2005, Negative thermal expansion, J. Phys.: Condensed Matter, 17, R217 von Reppert, 2016, Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet, Struct. Dyn. (Melville, N.Y.), 3 Maldonado, 2020, Tracking the ultrafast nonequilibrium energy flow between electronic and lattice degrees of freedom in crystalline nickel, Phys. Rev. B, 101, 10.1103/PhysRevB.101.100302 Ritzmann, 2020, Theory of out-of-equilibrium electron and phonon dynamics in metals after femtosecond laser excitation, Phys. Rev. B, 102, 10.1103/PhysRevB.102.214305 Bojahr, 2015, Second harmonic generation of nanoscale phonon wave packets, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.195502 Schick, 2014, Udkm1dsim—A simulation toolkit for 1D ultrafast dynamics in condensed matter, Comput. Phys. Commun., 185, 651, 10.1016/j.cpc.2013.10.009 Schick, 2021, udkm1Dsim – a Python toolbox for simulating 1D ultrafast dynamics in condensed matter, Comput. Phys. Commun., 266, 10.1016/j.cpc.2021.108031 Herzog, 2012, Analysis of ultrafast x-ray diffraction data in a linear-chain model of the lattice dynamics, Appl. Phys. A, 106, 489, 10.1007/s00339-011-6719-z Chang, 1997, Observation of coherent surface optical phonon oscillations by time-resolved surface second-harmonic generation, Phys. Rev. Lett., 78, 4649, 10.1103/PhysRevLett.78.4649 Melnikov, 2003, Coherent optical phonons and parametrically coupled magnons induced by femtosecond laser excitation of the gd(0001) surface, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.227403 Highland, 2007, Ballistic-phonon heat conduction at the nanoscale as revealed by time-resolved X-ray diffraction and time-domain thermoreflectance, Phys. Rev. B, 76, 10.1103/PhysRevB.76.075337 Mariager, 2012, Structural and magnetic dynamics of a laser induced phase transition in ferh, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.087201 Mariager, 2014, Structural and magnetic dynamics in the magnetic shape-memory alloy Ni2MnGa, Phys. Rev. B, 90, 10.1103/PhysRevB.90.161103 Mattern, 2022, Electronic energy transport in nanoscale Au/Fe hetero-structures in the perspective of ultrafast lattice dynamics, Appl. Phys. Lett., 120, 10.1063/5.0080378 Parpiiev, 2021, Ultrafast strain excitation in highly magnetostrictive terfenol: Experiments and theory, Phys. Rev. B, 104, 10.1103/PhysRevB.104.224426 Tsunoda, 2004, Temperature variation of the tetragonality in ordered PtFe alloy, J. Magn. Magn. Mater., 272–276, 776, 10.1016/j.jmmm.2003.11.263 Rasmussen, 2005, Texture formation in FePt thin films via thermal stress management, Appl. Phys. Lett., 86, 10.1063/1.1924889 von Reppert, 2018, Ultrafast laser generated strain in granular and continuous FePt thin films, Appl. Phys. Lett., 113, 10.1063/1.5050234 Pudell, 2018, Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond x-ray diffraction, Nat. Commun., 9, 3335, 10.1038/s41467-018-05693-5 Lin, 2008, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Phys. Rev. B, 77, 776, 10.1103/PhysRevB.77.075133 Khorsand, 2014, Optical excitation of thin magnetic layers in multilayer structures, Nat. Mater., 13, 101, 10.1038/nmat3850 Eschenlohr, 2014, Reply to ’optical excitation of thin magnetic layers in multilayer structures’, Nature Mater., 13, 102, 10.1038/nmat3851 Yakubovsky, 2019, Ultrathin and ultrasmooth gold films on monolayer MoS 2, Adv. Mater. Interfaces, 6 Wang, 2012, Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.175503 Choi, 2014, Spin current generated by thermally driven ultrafast demagnetization, Nat. Commun., 5, 4334, 10.1038/ncomms5334 Shin, 2020, Higher-order acoustic phonon oscillations in Au nanoparticles controlled by a sequence of ultrashort strain pulses generated by superdiffusive hot electrons, Phys. Rev. B, 101, 10.1103/PhysRevB.101.020302 Dumesnil, 1996, Magnetic structure of dysprosium in epitaxial dy films and in Dy/Er superlattices, Phys. Rev. B, 54, 6407, 10.1103/PhysRevB.54.6407 Koc, 2017, Ultrafast X-ray diffraction thermometry measures the influence of spin excitations on the heat transport through nanolayers, Phys. Rev. B, 96, 429, 10.1103/PhysRevB.96.014306 Pecharsky, 1996, Superheating and other unusual observations regarding the first order phase transition in dy, Scr. Mater., 35, 843, 10.1016/1359-6462(96)00225-4 Darnell, 1963, Lattice parameters of terbium and erbium at low temperatures, Phys. Rev., 132, 1098, 10.1103/PhysRev.132.1098 Darnell, 1963, Temperature dependence of lattice parameters for Gd, Dy, and Ho, Phys. Rev., 130, 1825, 10.1103/PhysRev.130.1825 Bulatov, 1996, Temperature dependences of thermal expansion and exchange magnetostriction of holmium and dysprosium single crystals, Czech. J. Phys., 46, 2119, 10.1007/BF02571051 Chernyshov, 2008, Temperature and magnetic field-dependent x-ray powder diffraction study of dysprosium, Phys. Rev. B, 77, 10.1103/PhysRevB.77.094132 Dove, 2016, Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation, Rep. Prog. Phys., 79, 10.1088/0034-4885/79/6/066503 Mattern, 2023, Towards shaping picosecond strain pulses via magnetostrictive transducers, Photoacoustics, 30, 10.1016/j.pacs.2023.100463 Juvé, 2020, Ultrafast light-induced shear strain probed by time-resolved x-ray diffraction: Multiferroic BiFeO3 as a case study, Phys. Rev. B, 102, 10.1103/PhysRevB.102.220303 Sokolowski-Tinten, 2003, Femtosecond x-ray measurement of coherent lattice vibrations near the lindemann stability limit, Nature, 422, 287, 10.1038/nature01490 Johnson, 2009, Full reconstruction of a crystal unit cell structure during coherent femtosecond motion, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.205501 Kozina, 2017, Local terahertz field enhancement for time-resolved x-ray diffraction, Appl. Phys. Lett., 110, 10.1063/1.4977088 de Jong, 2013, Speed limit of the insulator-metal transition in magnetite, Nat. Mater., 12, 882, 10.1038/nmat3718 Mogunov, 2020, Photoelasticity of VO2 nanolayers in insulating and metallic phases studied by picosecond ultrasonics, Phys. Rev. Materials, 4, 10.1103/PhysRevMaterials.4.125201 Schick, 2013, Following strain-induced mosaicity changes of ferroelectric thin films by ultrafast reciprocal space mapping, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.095502 Chen, 2016, Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3, Phys. Rev. B, 94, 1, 10.1103/PhysRevB.94.180104 Johnson, 2010, Non-equilibrium phonon dynamics studied by grazing-incidence femtosecond x-ray crystallography, Acta Crystallogr. A, 66, 157, 10.1107/S0108767309053859 Nüske, 2011, Picosecond time-resolved x-ray refectivity of a laser-heated amorphous carbon film, Appl. Phys. Lett., 98, 10.1063/1.3562967 Jal, 2017, Structural dynamics during laser-induced ultrafast demagnetization, Phys. Rev. B, 95, 10.1103/PhysRevB.95.184422 Robinson, 2009, Coherent x-ray diffraction imaging of strain at the nanoscale, Nat. Mater., 8, 291, 10.1038/nmat2400 Newton, 2014, Time-resolved coherent diffraction of ultrafast struct. dyn. in a single nanowire, Nano Lett., 14, 2413, 10.1021/nl500072d Holstad, 2022 Als-Nielsen, 2011 Warren, 1990 Authier, 2008, vol. 11 Noyan, 1995, Residual stress/strain analysis in thin films by x-ray diffraction, Crit. Rev. Solid State Mater. Sci., 20, 125, 10.1080/10408439508243733 Holý, 1999, vol. 149 Bargheer, 2005, Comparison of focusing optics for femtosecond x-ray diffraction, Appl. Phys. B, 80, 715, 10.1007/s00340-005-1792-7 2007, Time-resolved diffraction Rongione, 2023, Emission of coherent THz magnons in an antiferromagnetic insulator triggered by ultrafast spin-phonon interactions, Nat. Commun., 14, 1818, 10.1038/s41467-023-37509-6