Concepts and use cases for picosecond ultrasonics with x-rays
Tài liệu tham khảo
Grahn, 1989, Picosecond ultrasonics, IEEE J. Quantum Electron., 25, 2562, 10.1109/3.40643
Maris, 1998, Picosecond ultrasonics, Sci. Am., 278, 86, 10.1038/scientificamerican0198-86
Tas, 1994, Electron diffusion in metals studied by picosecond ultrasonics, Phys. Rev. B, 49, 15046, 10.1103/PhysRevB.49.15046
Tas, 1998, Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation, Appl. Phys. Lett., 72, 2235, 10.1063/1.121276
Antonelli, 2006, Characterization of mechanical and thermal properties using ultrafast optical metrology, MRS Bull., 31, 607, 10.1557/mrs2006.157
Matsuda, 2015, Fundamentals of picosecond laser ultrasonics, Ultrasonics, 56, 3, 10.1016/j.ultras.2014.06.005
Thomsen, 1986, Surface generation and detection of phonons by picosecond light pulses, Phys. Rev. B, 34, 4129, 10.1103/PhysRevB.34.4129
Ruello, 2015, Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action, Ultrasonics, 56, 21, 10.1016/j.ultras.2014.06.004
Wright, 1991, Ultrafast vibration and laser acoustics in thin transparent films, Opt. Lett., 16, 1529, 10.1364/OL.16.001529
Lejman, 2014, Ultrafast optical detection of coherent acoustic phonons emission driven by superdiffusive hot electrons, J. Opt. Soc. Am. B, 31, 282, 10.1364/JOSAB.31.000282
Gusev, 2014, Detection of nonlinear picosecond acoustic pulses by time-resolved brillouin scattering, J. Appl. Phys., 116, 10.1063/1.4893183
Bojahr, 2013, Brillouin scattering of visible and hard x-ray photons from optically synthesized phonon wavepackets, Opt. Express, 21, 21188, 10.1364/OE.21.021188
Gusev, 2018, Advances in applications of time-domain brillouin scattering for nanoscale imaging, Appl. Phys. Rev., 5, 10.1063/1.5017241
Wright, 1995, Laser picosecond acoustics in double-layer transparent films, Opt. Lett., 20, 632, 10.1364/OL.20.000632
Pezeril, 2016, Laser generation and detection of ultrafast shear acoustic waves in solids and liquids, Opt. Laser Technol., 83, 177, 10.1016/j.optlastec.2016.03.019
van Capel, 2010, Time-resolved interferometric detection of ultrashort strain solitons in sapphire, Phys. Rev. B, 81, 422, 10.1103/PhysRevB.81.144106
Daly, 2004, Imaging nanostructures with coherent phonon pulses, Appl. Phys. Lett., 84, 5180, 10.1063/1.1764599
Pérez-Cota, 2020, Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells, J. Appl. Phys., 128, 10.1063/5.0023744
Bargheer, 2006, Recent progress in ultrafast x-ray diffraction, Chemphyschem : Eur. J. Chem. Phys Phys. Chem., 7, 783, 10.1002/cphc.200500591
Lindenberg, 2017, Visualization of atomic-scale motions in materials via femtosecond X-Ray scattering techniques, Ann. Rev. Mater. Res., 47, 425, 10.1146/annurev-matsci-070616-124152
Trigo, 2021
Lindenberg, 2000, Time-resolved X-Ray diffraction from coherent phonons during a laser-induced phase transition, Phys. Rev. Lett., 84, 111, 10.1103/PhysRevLett.84.111
Larsson, 2002, Picosecond x-ray diffraction studies of laser-excited acoustic phonons in insb, Appl. Phys. A, 75, 467, 10.1007/s003390201421
Hayashi, 2006, Acoustic pulse echoes probed with time-resolved x-ray triple-crystal diffractometry, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.115505
Henighan, 2016, Generation mechanism of terahertz coherent acoustic phonons in fe, Phys. Rev. B, 93, 10.1103/PhysRevB.93.220301
Dornes, 2019, The ultrafast Einstein–de Haas effect, Nature, 565, 209, 10.1038/s41586-018-0822-7
Shayduk, 2022, Femtosecond X-ray diffraction study of multi-THz coherent phonons in SrTiO 3, Appl. Phys. Lett., 120, 10.1063/5.0083256
Trigo, 2010, Imaging nonequilibrium atomic vibrations with x-ray diffuse scattering, Phys. Rev. B Mater. Phys., 82, 235205, 10.1103/PhysRevB.82.235205
Trigo, 2013, Fourier-transform inelastic x-ray scattering from time- and momentum-dependent phonon–phonon correlations, Nat. Phys., 9, 790, 10.1038/nphys2788
Zhu, 2015, Phonon spectroscopy with sub-mev resolution by femtosecond X-ray diffuse scattering, Phys. Rev. B, 92, 10.1103/PhysRevB.92.054303
Wall, 2018, Ultrafast disordering of vanadium dimers in photoexcited VO2, Science (New York, N.Y.), 362, 572, 10.1126/science.aau3873
Rose-Petruck, 1999, Picosecond–milliångström lattice dynamics measured by ultrafast x-ray diffraction, Nature, 398, 310, 10.1038/18631
Bargheer, 2004, Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction, Science (New York, N.Y.), 306, 1771, 10.1126/science.1104739
Nicoul, 2011, Picosecond acoustic response of a laser-heated gold-film studied with time-resolved X-ray diffraction, Appl. Phys. Lett., 98, 10.1063/1.3584864
Quirin, 2012, Struct. dyn. in FeRh during a laser-induced metamagnetic phase transition, Phys. Rev. B, 85, 498, 10.1103/PhysRevB.85.020103
Zeuschner, 2019, Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction, Struct. Dyn. (Melville, N.Y.), 6
Bostedt, 2016, Linac coherent light source: The first five years, Rev. Mod. Phys., 88, 207, 10.1103/RevModPhys.88.015007
Abela, 2017, Perspective: Opportunities for ultrafast science at swissfel, Struct. Dyn. (Melville, N.Y.), 4
Schoenlein, 2019, Recent advances in ultrafast x-ray sources, Phil. Trans. R. Soc. A, 377, 10.1098/rsta.2018.0384
Schoenlein, 2000, Generation of femtosecond pulses of synchrotron radiation, Science (New York, N.Y.), 287, 2237, 10.1126/science.287.5461.2237
Beaud, 2007, Spatiotemporal stability of a femtosecond hard-X-ray undulator source studied by control of coherent optical phonons, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.174801
Enquist, 2010, Subpicosecond hard X-ray streak camera using single-photon counting, Opt. Lett., 35, 3219, 10.1364/OL.35.003219
Jankowiak, 2013, Low-α operation of BESSY II and future plans for an alternating bunch length scheme BESSY VSR, Synchrotron Radiat. News, 26, 22, 10.1080/08940886.2013.791212
Rössle, 2021, The time-resolved hard x-ray diffraction endstation KMC-3 XPP at BESSY II, J. Synchrotron Radiat., 28, 10.1107/S1600577521002484
Gaal, 2014, Ultrafast switching of hard x-rays, J. Synchrotron Radiat., 21, 380, 10.1107/S1600577513031949
Sander, 2019, Demonstration of a picosecond bragg switch for hard x-rays in a synchrotron-based pump-probe experiment, J. Synchrotron Radiat., 26, 1253, 10.1107/S1600577519005356
Grossmann, 2017, Characterization of thin-film adhesion and phonon lifetimes in Al/Si membranes by picosecond ultrasonics, New J. Phys., 19, 10.1088/1367-2630/aa6d05
Thomsen, 1986, Picosecond interferometric technique for study of phonons in the brillouin frequency range, Opt. Commun., 60, 55, 10.1016/0030-4018(86)90116-1
Lin, 1991, Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry, J. Appl. Phys., 69, 3816, 10.1063/1.348958
Bergeard, 2016, Hot-electron-induced ultrafast demagnetization in Co/Pt multilayers, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.147203
Ferté, 2017, Ultrafast hot-electron induced quenching of tb 4f magnetic order, Phys. Rev. B, 96, 10.1103/PhysRevB.96.144427
Xu, 2017, Ultrafast magnetization manipulation using single femtosecond light and hot-electron pulses, Adv. Mater., 29, 10.1002/adma.201703474
Bergeard, 2020, Tailoring femtosecond hot-electron pulses for ultrafast spin manipulation, Appl. Phys. Lett., 117, 10.1063/5.0018502
Schick, 2013, Ultrafast reciprocal-space mapping with a convergent beam, J. Appl. Crystallogr., 46, 1372, 10.1107/S0021889813020013
Zeuschner, 2021, Reciprocal space slicing: A time-efficient approach to femtosecond x-ray diffraction, Struct. Dyn. (Melville, N.Y.), 8
Pudell, 2020, Heat transport without heating?—An ultrafast X–ray perspective into a metal heterostructure, Adv. Funct. Mater., 30
Royer, 2000
Nie, 2006, Measurement of the electronic Grüneisen constant using femtosecond electron diffraction, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.025901
Maldonado, 2017, Theory of out-of-equilibrium ultrafast relaxation dynamics in metals, Phys. Rev. B, 96, 173, 10.1103/PhysRevB.96.174439
Reddy, 2005, Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion, Appl. Phys. Lett., 87, 10.1063/1.2133890
Oommen, 2022, Role of vibrational properties and electron-phonon coupling on thermal transport across metal-dielectric interfaces with ultrathin metallic interlayers, J. Phys.: Condens. Matter. Inst. Phys. J.
Herzog, 2022, Phonon–dominated energy transport in purely metallic heterostructures, Adv. Funct. Mater., 10.1002/adfm.202206179
Yeh, 2005
Le Guyader, 2013, Dynamics of laser-induced spin reorientation in Co/SmFeO3 heterostructure, Phys. Rev. B, 87, 935, 10.1103/PhysRevB.87.054437
Wang, 2008, Electronic Grüneisen parameter and thermal expansion in ferromagnetic transition metal, Appl. Phys. Lett., 92, 10.1063/1.2902170
Schick, 2014, Ultrafast lattice response of photoexcited thin films studied by x-ray diffraction, Struct. Dyn. (Melville, N.Y.), 1
Korff Schmising, 2008, Ultrafast magnetostriction and phonon-mediated stress in a photoexcited ferromagnet, Phys. Rev. B, 78, 10.1103/PhysRevB.78.060404
Brorson, 1987, Femtosecond electronic heat-transport dynamics in thin gold films, Phys. Rev. Lett., 59, 1962, 10.1103/PhysRevLett.59.1962
Hohlfeld, 1997, Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness, Appl. Phys. B, 64, 387, 10.1007/s003400050189
Battiato, 2012, Theory of laser-induced ultrafast superdiffusive spin transport in layered heterostructures, Phys. Rev. B, 86, 10.1103/PhysRevB.86.024404
Malinowski, 2018, Hot-electron transport and ultrafast magnetization dynamics in magnetic multilayers and nanostructures following femtosecond laser pulse excitation, Zeitschrift Fr Physik B Condensed Matter and Quanta, 91, 3251
Hohlfeld, 2000, Electron and lattice dynamics following optical excitation of metals, Chem. Phys., 251, 237, 10.1016/S0301-0104(99)00330-4
Nenno, 2018, Particle-in-cell simulation of ultrafast hot-carrier transport in Fe/Au heterostructures, Phys. Rev. B, 98, 10.1103/PhysRevB.98.224416
Wais, 2021, Numerical solver for the time-dependent far-from-equilibrium Boltzmann equation, Comput. Phys. Commun., 264, 10.1016/j.cpc.2021.107877
Chen, 2001, Ballistic-diffusive heat-conduction equations, Phys. Rev. Lett., 86, 2297, 10.1103/PhysRevLett.86.2297
Wang, 2010, Temperature dependence of electron-phonon thermalization and its correlation to ultrafast magnetism, Phys. Rev. B, 81, 10.1103/PhysRevB.81.220301
Zahn, 2021, Lattice dynamics and ultrafast energy flow between electrons, spins, and phonons in a 3d ferromagnet, Phys. Rev. Res., 3, 10.1103/PhysRevResearch.3.023032
Zahn, 2022, Intrinsic energy flow in laser-excited 3d ferromagnets, Phys. Rev. Res., 4, 10.1103/PhysRevResearch.4.013104
Koopmans, 2010, Explaining the paradoxical diversity of ultrafast laser-induced demagnetization, Nat. Mater., 9, 259, 10.1038/nmat2593
Battiato, 2010, Superdiffusive spin transport as a mechanism of ultrafast demagnetization, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.027203
Roth, 2012, Temperature dependence of laser-induced demagnetization in Ni: A key for identifying the underlying mechanism, Phys. Rev. X, 2
Frietsch, 2015, Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal, Nat. Commun., 6, 8262, 10.1038/ncomms9262
Shokeen, 2017, Spin flips versus spin transport in nonthermal electrons excited by ultrashort optical pulses in transition metals, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.107203
Siegrist, 2019, Light-wave dynamic control of magnetism, Nature, 571, 240, 10.1038/s41586-019-1333-x
Frietsch, 2020, The role of ultrafast magnon generation in the magnetization dynamics of rare-earth metals, Sci. Adv., 6, 10.1126/sciadv.abb1601
Pudell, 2019, Ultrafast negative thermal expansion driven by spin disorder, Phys. Rev. B, 99, 10.1103/PhysRevB.99.094304
von Reppert, 2020, Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer, Struct. Dyn. (Melville, N.Y.), 7
Barron, 1980, Thermal expansion of solids at low temperatures, Adv. Phy., 29, 609, 10.1080/00018738000101426
White, 1993, Solids: Thermal expansion and contraction, Contemp. Phys., 34, 193, 10.1080/00107519308213818
von Reppert, 2016, Watching the vibration and cooling of ultrathin gold nanotriangles by ultrafast x-ray diffraction, J. Phys. Chem. C, 120, 28894, 10.1021/acs.jpcc.6b11651
White, 1962, Thermal expansion at low temperatures— V. Dilute alloys of manganese in copper, J. Phys. Chem. Solids, 23, 169, 10.1016/0022-3697(62)90077-X
Pytte, 1965, Spin-phonon interactions in a heisenberg ferromagnet, Ann. Phys., 32, 377, 10.1016/0003-4916(65)90139-9
Argyle, 1967, Magnetoelastic behavior of single-crystal europium oxide. I. Thermal expansion anomaly, Phys. Rev., 160, 413, 10.1103/PhysRev.160.413
Reid, 2018, Beyond a phenomenological description of magnetostriction, Nat. Commun., 9, 388, 10.1038/s41467-017-02730-7
von Reppert, 2020, Spin stress contribution to the lattice dynamics of fept, Sci. Adv., 6, 10.1126/sciadv.aba1142
Mattern, 2021, Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO 3, Struct. Dyn. (Melville, N.Y.), 8
Ashcroft, 2012
Nix, 1941, The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron, Phys. Rev., 60, 597, 10.1103/PhysRev.60.597
Nicklow, 1971, Lattice dynamics of holmium, Phys. Rev. B, 3, 1229, 10.1103/PhysRevB.3.1229
Barrera, 2005, Negative thermal expansion, J. Phys.: Condensed Matter, 17, R217
von Reppert, 2016, Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet, Struct. Dyn. (Melville, N.Y.), 3
Maldonado, 2020, Tracking the ultrafast nonequilibrium energy flow between electronic and lattice degrees of freedom in crystalline nickel, Phys. Rev. B, 101, 10.1103/PhysRevB.101.100302
Ritzmann, 2020, Theory of out-of-equilibrium electron and phonon dynamics in metals after femtosecond laser excitation, Phys. Rev. B, 102, 10.1103/PhysRevB.102.214305
Bojahr, 2015, Second harmonic generation of nanoscale phonon wave packets, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.195502
Schick, 2014, Udkm1dsim—A simulation toolkit for 1D ultrafast dynamics in condensed matter, Comput. Phys. Commun., 185, 651, 10.1016/j.cpc.2013.10.009
Schick, 2021, udkm1Dsim – a Python toolbox for simulating 1D ultrafast dynamics in condensed matter, Comput. Phys. Commun., 266, 10.1016/j.cpc.2021.108031
Herzog, 2012, Analysis of ultrafast x-ray diffraction data in a linear-chain model of the lattice dynamics, Appl. Phys. A, 106, 489, 10.1007/s00339-011-6719-z
Chang, 1997, Observation of coherent surface optical phonon oscillations by time-resolved surface second-harmonic generation, Phys. Rev. Lett., 78, 4649, 10.1103/PhysRevLett.78.4649
Melnikov, 2003, Coherent optical phonons and parametrically coupled magnons induced by femtosecond laser excitation of the gd(0001) surface, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.227403
Highland, 2007, Ballistic-phonon heat conduction at the nanoscale as revealed by time-resolved X-ray diffraction and time-domain thermoreflectance, Phys. Rev. B, 76, 10.1103/PhysRevB.76.075337
Mariager, 2012, Structural and magnetic dynamics of a laser induced phase transition in ferh, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.087201
Mariager, 2014, Structural and magnetic dynamics in the magnetic shape-memory alloy Ni2MnGa, Phys. Rev. B, 90, 10.1103/PhysRevB.90.161103
Mattern, 2022, Electronic energy transport in nanoscale Au/Fe hetero-structures in the perspective of ultrafast lattice dynamics, Appl. Phys. Lett., 120, 10.1063/5.0080378
Parpiiev, 2021, Ultrafast strain excitation in highly magnetostrictive terfenol: Experiments and theory, Phys. Rev. B, 104, 10.1103/PhysRevB.104.224426
Tsunoda, 2004, Temperature variation of the tetragonality in ordered PtFe alloy, J. Magn. Magn. Mater., 272–276, 776, 10.1016/j.jmmm.2003.11.263
Rasmussen, 2005, Texture formation in FePt thin films via thermal stress management, Appl. Phys. Lett., 86, 10.1063/1.1924889
von Reppert, 2018, Ultrafast laser generated strain in granular and continuous FePt thin films, Appl. Phys. Lett., 113, 10.1063/1.5050234
Pudell, 2018, Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond x-ray diffraction, Nat. Commun., 9, 3335, 10.1038/s41467-018-05693-5
Lin, 2008, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Phys. Rev. B, 77, 776, 10.1103/PhysRevB.77.075133
Khorsand, 2014, Optical excitation of thin magnetic layers in multilayer structures, Nat. Mater., 13, 101, 10.1038/nmat3850
Eschenlohr, 2014, Reply to ’optical excitation of thin magnetic layers in multilayer structures’, Nature Mater., 13, 102, 10.1038/nmat3851
Yakubovsky, 2019, Ultrathin and ultrasmooth gold films on monolayer MoS 2, Adv. Mater. Interfaces, 6
Wang, 2012, Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.175503
Choi, 2014, Spin current generated by thermally driven ultrafast demagnetization, Nat. Commun., 5, 4334, 10.1038/ncomms5334
Shin, 2020, Higher-order acoustic phonon oscillations in Au nanoparticles controlled by a sequence of ultrashort strain pulses generated by superdiffusive hot electrons, Phys. Rev. B, 101, 10.1103/PhysRevB.101.020302
Dumesnil, 1996, Magnetic structure of dysprosium in epitaxial dy films and in Dy/Er superlattices, Phys. Rev. B, 54, 6407, 10.1103/PhysRevB.54.6407
Koc, 2017, Ultrafast X-ray diffraction thermometry measures the influence of spin excitations on the heat transport through nanolayers, Phys. Rev. B, 96, 429, 10.1103/PhysRevB.96.014306
Pecharsky, 1996, Superheating and other unusual observations regarding the first order phase transition in dy, Scr. Mater., 35, 843, 10.1016/1359-6462(96)00225-4
Darnell, 1963, Lattice parameters of terbium and erbium at low temperatures, Phys. Rev., 132, 1098, 10.1103/PhysRev.132.1098
Darnell, 1963, Temperature dependence of lattice parameters for Gd, Dy, and Ho, Phys. Rev., 130, 1825, 10.1103/PhysRev.130.1825
Bulatov, 1996, Temperature dependences of thermal expansion and exchange magnetostriction of holmium and dysprosium single crystals, Czech. J. Phys., 46, 2119, 10.1007/BF02571051
Chernyshov, 2008, Temperature and magnetic field-dependent x-ray powder diffraction study of dysprosium, Phys. Rev. B, 77, 10.1103/PhysRevB.77.094132
Dove, 2016, Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation, Rep. Prog. Phys., 79, 10.1088/0034-4885/79/6/066503
Mattern, 2023, Towards shaping picosecond strain pulses via magnetostrictive transducers, Photoacoustics, 30, 10.1016/j.pacs.2023.100463
Juvé, 2020, Ultrafast light-induced shear strain probed by time-resolved x-ray diffraction: Multiferroic BiFeO3 as a case study, Phys. Rev. B, 102, 10.1103/PhysRevB.102.220303
Sokolowski-Tinten, 2003, Femtosecond x-ray measurement of coherent lattice vibrations near the lindemann stability limit, Nature, 422, 287, 10.1038/nature01490
Johnson, 2009, Full reconstruction of a crystal unit cell structure during coherent femtosecond motion, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.205501
Kozina, 2017, Local terahertz field enhancement for time-resolved x-ray diffraction, Appl. Phys. Lett., 110, 10.1063/1.4977088
de Jong, 2013, Speed limit of the insulator-metal transition in magnetite, Nat. Mater., 12, 882, 10.1038/nmat3718
Mogunov, 2020, Photoelasticity of VO2 nanolayers in insulating and metallic phases studied by picosecond ultrasonics, Phys. Rev. Materials, 4, 10.1103/PhysRevMaterials.4.125201
Schick, 2013, Following strain-induced mosaicity changes of ferroelectric thin films by ultrafast reciprocal space mapping, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.095502
Chen, 2016, Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3, Phys. Rev. B, 94, 1, 10.1103/PhysRevB.94.180104
Johnson, 2010, Non-equilibrium phonon dynamics studied by grazing-incidence femtosecond x-ray crystallography, Acta Crystallogr. A, 66, 157, 10.1107/S0108767309053859
Nüske, 2011, Picosecond time-resolved x-ray refectivity of a laser-heated amorphous carbon film, Appl. Phys. Lett., 98, 10.1063/1.3562967
Jal, 2017, Structural dynamics during laser-induced ultrafast demagnetization, Phys. Rev. B, 95, 10.1103/PhysRevB.95.184422
Robinson, 2009, Coherent x-ray diffraction imaging of strain at the nanoscale, Nat. Mater., 8, 291, 10.1038/nmat2400
Newton, 2014, Time-resolved coherent diffraction of ultrafast struct. dyn. in a single nanowire, Nano Lett., 14, 2413, 10.1021/nl500072d
Holstad, 2022
Als-Nielsen, 2011
Warren, 1990
Authier, 2008, vol. 11
Noyan, 1995, Residual stress/strain analysis in thin films by x-ray diffraction, Crit. Rev. Solid State Mater. Sci., 20, 125, 10.1080/10408439508243733
Holý, 1999, vol. 149
Bargheer, 2005, Comparison of focusing optics for femtosecond x-ray diffraction, Appl. Phys. B, 80, 715, 10.1007/s00340-005-1792-7
2007, Time-resolved diffraction
Rongione, 2023, Emission of coherent THz magnons in an antiferromagnetic insulator triggered by ultrafast spin-phonon interactions, Nat. Commun., 14, 1818, 10.1038/s41467-023-37509-6