Concepts and terms for dose/volume parameters in carbon-ion radiotherapy: Conclusions of the ULICE taskforce

Cancer/Radiothérapie - Tập 22 - Trang 802-809 - 2018
G. Vogin1,2,3, A. Wambersie4,5, R. Pötter6,7, M. Beuve8,9, S.E. Combs10,11, G. Magrin12, R. Mayer12, U. Mock12, D. Sarrut8,13,14, T. Schreiner12, P. Fossati15,16, J. Balosso17,18,19
1Département de radiothérapie, institut de cancérologie de Lorraine Alexis-Vautrin, 54519 Vandœuvre-lès-Nancy cedex, France
2CNRS, UMR 7365, ingénierie moléculaire et physiopathologie articulaire (Imopa), 54505 Vandœuvre-lès-Nancy cedex, France
3Université de Lorraine, 54505 Vandoeuvre-lès-Nancy, France
4Institut de recherche expérimentale et clinique (Irec), Molecular Imaging, Radiotherapy and Oncology (MIRO), cliniques universitaires Saint-Luc, 1200 Brussels, Belgium
5Université catholique de Louvain (UCL), 1348 Louvain-la-Neuve, Belgium
6Department of Radiotherapy, Comprehensive Cancer Center, Vienna, Austria
7Medical University of Vienna, Vienna, Austria
8Université Lyon 1, 69100 Villeurbanne, France
9Institut de physique nucléaire de Lyon, 69622 Villeurbanne cedex, France
10Klinik und Poliklinik für RadioOnkologie und Strahlentherapie, Technische Universität München (TUM), 81675 München, Germany
11Instituts für Innovative Radiotherapie (iRT), Helmholtz Zentrum München, 85764 Oberschleißheim, Germany
12EBG MedAustron GmbH, 2700 Wiener-Neustadt, Austria
13CNRS, UMR 5220 Laboratoire Creatis, 69100 Villeurbanne, France
14Inserm, U1044 Laboratoire Creatis, 69100 Villeurbanne, France
15Università di Milano–Medicina e Chirurgia, Milano, Italy
16Fondazione CNAO (Centro Nazionale di Adroterapia Oncologica), Pavia, Italy
17Service de cancérologie-radiothérapie, hôpital Albert-Michallon, CHU Grenoble Alpes, 38043 Grenoble cedex 09, France
18IPNL, France Hadron national research infrastructure, 69000 Lyon, France
19Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France

Tài liệu tham khảo

Baron, 2004, A “one-day survey”: as a reliable estimation of the potential recruitment for proton- and carbon- ion therapy in France, Radiother Oncol, 73, S15, 10.1016/S0167-8140(04)80005-7 Loeffler, 2013, Charged particle therapy – optimization, challenges and future directions, Nat Rev Clin Oncol, 10, 411, 10.1038/nrclinonc.2013.79 Barendsen, 1966, The effect of oxygen on impairment of the proliferative capacity of human cells in culture by ionizing radiations of different LET, Int J Radiat Biol, 10, 317 Furusawa, 2000, Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3He)-, (12C)- and (20Ne)-ion-beams, Radiat Res, 154, 485, 10.1667/0033-7587(2000)154[0485:IOAAHC]2.0.CO;2 Schlaff, 2014, Bringing the heavy: carbon-ion therapy in the radiobiological and clinical context, Radiat Oncol, 9, 88, 10.1186/1748-717X-9-88 Minohara, 2010, Recent innovations in carbon-ion radiotherapy, J Radiat Res, 51, 385, 10.1269/jrr.10028 ICRU, 1999 Combs, 2010, Heidelberg Ion Therapy Center (HIT): initial clinical experience in the first 80 patients, Acta Oncol, 49, 1132, 10.3109/0284186X.2010.498432 Kamada, 2015, Carbon-ion radiotherapy in Japan: an assessment of 20 years of clinical experience, Lancet Oncol, 16, e93, 10.1016/S1470-2045(14)70412-7 Pommier, 2010, Simulating demand for innovative radiotherapies: an illustrative model based on carbon-ion and proton radiotherapy, Radiother Oncol, 96, 243, 10.1016/j.radonc.2010.04.010 Vanderstraeten, 2014, In search of the economic sustainability of hadron therapy: the real cost of setting up and operating a hadron facility, Int J Radiat Oncol, Biol, Phys, 89, 152, 10.1016/j.ijrobp.2014.01.039 Peeters, 2010, How costly is particle therapy? Cost analysis of external beam radiotherapy with carbon-ions, protons and photons, Radiother Oncol, 95, 45, 10.1016/j.radonc.2009.12.002 Dosanjh, 2012, ENLIGHT: The European Network for light ion hadron therapy, Health Phys, 103, 674, 10.1097/HP.0b013e3182606520 Combs, 2013, Towards clinical evidence in particle therapy: ENLIGHT, PARTNER, ULICE and beyond, J Radiat Res, 54, i6, 10.1093/jrr/rrt039 ICRU, 2007, Report 78: prescribing, recording, and reporting proton-beam therapy, J ICRU, 7, 1, 10.1093/jicru_ndm021 Ammazzalorso, 2014, Dosimetric consequences of intrafraction prostate motion in scanned ion-beam radiotherapy, Radiother Oncol, 112, 100, 10.1016/j.radonc.2014.03.022 Bert, 2011, Motion in radiotherapy: particle therapy, Phys Med Biol, 56, R113, 10.1088/0031-9155/56/16/R01 Lomax, 2008, Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions, Phys Med Biol, 53, 1043, 10.1088/0031-9155/53/4/015 Unkelbach, 2005, Incorporating organ movements in inverse planning: assessing dose uncertainties by Bayesian inference, Phys Med Biol, 50, 121, 10.1088/0031-9155/50/1/010 Maleike, 2006, Simulation and visualization of dose uncertainties due to interfractional organ motion, Phys Med Biol, 5, 2237, 10.1088/0031-9155/51/9/009 ICRU, 2010, Report 83: prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT), J ICRU, 10, 1, 10.1093/jicru_ndq002 ICRU, 2011, Report 85: fundamental quantities and units for ionizing radiation, J ICRU, 11, 1 Wambersie, 2011, Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies, Radiat Prot Dosimetry, 14, 481, 10.1093/rpd/ncq410 Task Group on Radiation Quality Effects in Radiological Protection, Committee 1 on Radiation Effects, International Commission on Radiological Protection, 2003, Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (w(R)). A report of the International Commission on Radiological Protection, Ann ICRP, 33, 1 Jones, 2012, Dilemmas concerning dose distribution and the influence of relative biological effect in proton-beam therapy of medulloblastoma, Br J Radiol, 85, e912, 10.1259/bjr/24498486 Wambersie, 2006, The RBE issues in ion-beam therapy: conclusions of a joint IAEA/ICRU working group regarding quantities and units, Radiat Prot Dosimetry, 122, 463, 10.1093/rpd/ncl447 Kanai, 1999, Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy, Int J Radiat Oncol Biol Phys, 44, 201, 10.1016/S0360-3016(98)00544-6 Inaniwa, 2010, Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model, Phys Med Biol, 55, 6721, 10.1088/0031-9155/55/22/008 Elsasser, 2008, Accuracy of the local effect model for the prediction of biologic effects of carbon-ion-beams in vitro and in vivo, Int J Radiat Oncol Biol Phys, 71, 866, 10.1016/j.ijrobp.2008.02.037 Steinsträter, 2012, Mapping of RBE-weighted doses between HIMAC- and LEM-Based treatment planning systems for carbon-ion therapy, Int J Radiat Oncol Biol Phys, 84, 854, 10.1016/j.ijrobp.2012.01.038 Fossati, 2012, Dose prescription in carbon-ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy, Phys Med Biol, 57, 7543, 10.1088/0031-9155/57/22/7543 Bentzen, 2012, Bioeffect modeling and equieffective dose concepts in radiation oncology – terminology, quantities and units, Radiother Oncol, 105, 266, 10.1016/j.radonc.2012.10.006 2006 Wandersie, 2011 Balosso, 2012 Nioutsikou, 2005, Reconsidering the definition of a dose/volume histogram, Phys Med Biol, 50, L17, 10.1088/0031-9155/50/11/L01 Balosso, 2014 2012 International Atomic Energy Agency (IAEA), 2008 Herrmann, 2011, Dose response of alanine detectors irradiated with carbon-ion-beams, Med Phys, 38, 1859, 10.1118/1.3560459 2011 Cabal, 2013, Dynamic target definition: a novel approach for PTV definition in ion-beam therapy, Radiother Oncol, 107, 227, 10.1016/j.radonc.2013.03.010 2011 2011 2011 Jones, 2015, A simpler energy transfer efficiency model to predict relative biological effect for protons and heavier ions, Front Oncol, 5, 184, 10.3389/fonc.2015.00184 Steinsträter, 2015, Integration of a model-independent interface for RBE predictions in a treatment planning system for active particle beam scanning, Phys Med Biol, 60, 6811, 10.1088/0031-9155/60/17/6811 Jones, 2011, Fast neutron relative biological effects and implications for charged particle therapy, Br J Radiol, 84, S11, 10.1259/bjr/67509851 Abler, 2014, Feasibility study for a biomedical experimental facility based on LEIR at CERN, J Radiat Res, 54, i162, 10.1093/jrr/rrt056