Concept Mover’s Distance: measuring concept engagement via word embeddings in texts
Tóm tắt
Từ khóa
Tài liệu tham khảo
Artetxe, M., Labaka, G., & Agirre, E. (2016). Learning principled bilingual mappings of word embeddings while preserving monolingual invariance. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (pp. 2289–2294). Austin: Association for Computational Linguistics.
Benoit, K., & Watanabe, K. (2019). quanteda.corpora: A Collection of Corpora for quanteda. R package version 0.86. https://github.com/quanteda/quanteda.corpora . Accessed 18 Feb 2019.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
Boas, F. S. (1896). Shakespeare and his predecessors. London: John Murray.
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135–146.
Bonikowski, B., & Gidron, N. (2016). The populist style in American politics: Presidential campaign discourse, 1952–1996. Social Forces, 94, 1593–1621.
Brokos, G. -I., Malakasiotis, P, & Androutsopoulos, I. (2016). Using centroids of word embeddings and Word Mover’s Distance for biomedical document retrieval in question answering. arXiV preprint arXiv:1608.03905 .
Core R Team. (2013). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Dennett, D. C. (1991). Consciousness explained. Boston: Back Bay Books.
Diuk, C. G., Fernandez Slezak, D., Raskovsky, I., Sigman, M., & Cecchi, G. A. (2012). A quantitative philology of introspection. Frontiers in Integrative Neuroscience, 6, 1–12.
Ellis, N. C. (2019). Essentials of a theory of language cognition. The Modern Language Journal, 103, 39–60.
Emirbayer, M. (1997). Manifesto for relational sociology. American Journal of Sociology, 103, 281–317.
Firth, J. (1957). A synopsis of linguistic theory, 1930–1955. In Studies in linguistic analysis (pp. 168–205). Oxford: Blackwell.
Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115, E3635–E3644.
Greimas, A. (1983). Structural semantics: An attempt at a method. Lincoln: University of Nebraska Press.
Hamilton, W. L., Leskovec, J., & Jurafsky, D. (2016). Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the $$54{th}$$ Annual Meeting of the Association for Computational Linguistics (pp. 1489–1501). Berlin: Association for Computational Linguistics.
Ignatow, G. (2009). Culture and embodied cognition: Moral discourses in internet support groups for overeaters. Social Forces, 88, 643–670.
Jaynes, J. (1976). The origins of consciousness in the breakdown of the bicameral mind. Boston: Houghton Mifflin.
Jaynes, J. (1986). Consciousness and the voices of the mind. Lecture given at the Canadian Psychological Association Symposium on Consciousness. Halifax: Canadian Psychological Association.
Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., & Mikolov, T. (2016). FastText.zip: Compressing text classification models. arXiv preprint arXiv:1612.03651 .
Klementiev, A., Titov, I., & Bhattarai, B. (2012). Inducing crosslingual distributed representations of words. In: Proceedings of COLING 2012: Technical Papers (pp. 1459–1474 ). Mumbai: Association for Computational Linguistics.
Kozlowski, A. C., Taddy, M., & Evans, J. A. (2018). The geometry of culture: Analyzing meaning through word embeddings. arXiv preprint arXiv:1803.09288 .
Kusner, M. J., Sun, Y., Kolkin, N. I., & Weinberger, K. Q. (2015). From word embeddings to document distances. In: Proceedings of the $$32{nd}$$ International Conference on Machine Learning. Lille: International Machine Learning Society.
Lakoff, G. (2002). Moral politics: How liberals and conservatives think. Chicago: The University of Chicago Press.
Leaf, W. (1892). A companion to the iliad, for English readers. London: MacMillan and Co.
Levina, E., & Peter, B. (2001). The Earth Mover’s Distance is the mallows distance: Some insights from statistics. In: IEEE Proceedings of the Eighth IEEE International Conference on Computer Vision. Vancouver: Institute of Electrical and Electronics Engineers.
Mikolov, T., Yih, W., & Zweig, G. (2013). Linguistic regularities in continuous space word representations. In: Proceedings of NAACL-HLT 2013 (pp. 746–751 ). Atlanta: Association for Computational Linguistics.
Mullins, Daniel Austin, Hoyer, Daniel, Collins, Christina, Currie, Thomas, Freeney, Kevin, François, Pieter, et al. (2018). A systematic assessment of ’Axial Age’ proposals using global comparative historical evidence. American Sociological Review, 83, 596–626.
Pagel, Mark, Atkinson, Quentin D., & Meade, Andrew. (2007). Frequency of word-use predicts rates of lexical evolution throughout Indo-European history. Nature, 49, 717–721.
Pele, O., & Werman, M. (2009). Fast and Robust Earth Mover’s Distances. In: 2009 IEEE $$12{th}$$ International Conference on Computer Vision (pp. 460–467). Kyoto: Institute of Electrical and Electronics Engineers.
Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (pp. 1532–1543). Doha: Association for Computational Linguistics.
Project Gutenberg. (2019). Project Gutenberg. https://www.gutenberg.org/wiki/Main_Page . Accessed 18 Feb 2019.
Raskovsky, I., Fernández Slezak, D., Diuk, C. G., & Cecchi, G. A. (2010). The emergence of the modern concept of introspection: A quantitative linguistic analysis. In: Proceedings of the NAACL HLT 2010 Young Investigators Workshop on Computational Approaches to Languages of the Americas (pp. 68–75 ). Los Angeles: Association for Computational Linguistics.
Rosch, Eleanor, & Mervis, Carolyn B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573–605.
Rubner, Y., Tomasi, C., & Guibas, L. J. (1998). A metric for distributions with applications to image databases. In: Proceedings of the 1998 IEEE International Conference on Computer Vision. Bombay: Institute of Electrical and Electronics Engineers.
Scheff, Thomas J. (2011). What’s love got to do with it? Emotions and relationships in pop songs. New York: Routledge.
Schloerke, B., Crowley, J., Cook, D., Hofmann, H., Wickham, H., Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Larmarange, J. (2018). “GGally: Extension to ‘ggplot2.”’ R package version 1.4.0. https://cran.r-project.org/web/packages/GGally/GGally.pdf . Accessed 18 Feb 2019.
Snell, B. (2013). The Discovery of the Mind: The Greek Origins of European Thought. Translated by T. G. Rosenmeyer. Tacoma: Angelico Press (1953) .
Selivanov, D., & Wang, Q. (2018). text2vec: Modern text mining framework for R.” R package 0.5.1 documentation. https://cran.r-project.org/web/packages/text2vec/text2vec.pdf . Accessed 16 Feb 2019.
Smith, S., Turban, D., Hamblin, S., & Hammerla, N. (2017). Offline bilingual word vectors, orthogonal transformations and the inverted softmax. arXiv preprint arXiv:1702.03859 .
Taylor, John R. (2003). Linguistic categorization. New York: Oxford University Press.
Taylor, Marshall A., Stoltz, Dustin S., & McDonnell, Terence E. (2019). Binding signicance to form: Cultural objects, neural binding, and cultural change. Poetics, 73, 1–16.
The American Presidency Project. (2018). Annual Messages to Congress on the State of the Union (Washington 1790—Trump 2018). https://www.presidency.ucsb.edu/documents/presidential-documents-archive-guidebook/annual-messages-congress-the-state-the-union . Accessed 3 Feb 2019.
Urban Institute Research. (2019). urbnthemes: Urban Institute’s ggplot2 Theme and Tools. https://github.com/UI-Research/urbnthemes . Accessed 18 Feb 2019.
Xing, C., Wang, D., Liu, C., & Lin, Y. (2015). Normalized word embedding and orthogonal transform for bilingual word translation. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 1006–1011). Denver: Association for Computational Linguistics.